
Università degli Studi di Siena

Project title: A way to compute PCA analysis on CUDA

Students: Giacomo Nunziati (matr. 103246)
Christian Di Maio (matr. 104985)

Professor: Roberto Giorgi

1

Introduction

1 Overview

The objective of the project is to compare the performance of different sys-
tems equipped with one or more Nvidia GPU accelerator (for more details,
refer to the appendix). The chosen benchmark is the algorithm to perform
principal component analysis (PCA) of a data set.
The algorithm has been developed in the CUDA environment and imple-
mented in various different ways, in order to highlight the different perfor-
mance outcomes that can be obtained when the various architectural ele-
ments of the GPU are used.
Once the algorithm have been implemented they have been executed on the
selected systems and the performance results have been measured and com-
pared.

2 PCA

The principal component analysis is looking for a way to reduce the dimen-
sionality of a given feature space. [JC16]
The goal of the project is to find, given a data set represented by an N ×M1

matrix, all the eigenvectors of the co-variance matrix of the input data, sorted
from the most important to the less one. The method that we apply to per-
form the PCA is basically divided in 3 steps:

• Co-variance matrix calculation.

• Eigenvalues associated to the co-variance matrix.

• Given each eigenvalue find the associated eigenvector.

Assuming that we have Input as input matrix, with a form like this:

Input =


i11 i12 . . . i1M
...

. . .

iN1 iNM


1N-rows,M-columns

2

2.1 Co-variance matrix calculation

Given the maximum and the mean of each column, respectively maxj and
meanj, of the matrix Input, the calculation of the co-variance matrix is done
by evaluating the normalized input matrix, accordingly with the following
formula:

i′ij =
iij −meanj

|maxj|

NormalizedInput =


i′11 i′12 . . . i′1M
...

. . .

i′N1 i′NM


After normalizing the columns of the input matrix, the co-variance matrix

can be obtained multiplying NormalizedInput by itself:

CovMat = NormalizedInputT ×NormalizedInput

So at this point we have the Co-variance Matrix with dimension M ×M2.

CovMat =


c11 c12 . . . c1M
...

. . .

cM1 cMM



2M columns of input matrix

3

2.2 Find Eigenvalues with Jacobi method

Starting from the co-variance matrix we start a loop on which we iterate the
following steps [Qua+14b]:

• Step 0:
A(1) = CovMat

• Step 1: Find over the upper triangle of the matrix A(k) the maximum
value (absolute) max

(k)
rs on which r and s are respectively the row and

the column index.
Given r and s calculate:

m(k) =
a
(k)
rr − a(k)ss

2a
(k)
rs

t = min{−m(k) +
√

1 + (m(k))2,−m(k) −
√

1 + (m(k))2}

• Step 2: Calculate the rotation matrix

G(k)
rs =

r s



1
. . .

cosφ sinφ r
− sinφ cosφ s

. . .

1

Where

cosφ = 1√
1−t2

sinφ = t cosφ

4

• Step 3: Compute the new Matrix A(k+1),

A(k+1) = G
(k)T

rs × A(k) ×G(k)
rs

• Step 4: Go To Step 1 until

max
∀aij∈A(k+1),i>j

|a(k+1)
ij | ≤ ε

At this point we have on the diagonal of A all the eigenvalues of the co-
variance matrix.
To be faster and save some computational resources, we collect only the
eigenvalues which store the 99% of information, otherwise we have a very
low valued eigenvalues which is useless with respect of our main goal.

2.3 Find Eigenvectors with inverse power method

At this point we have all the most important eigenvalues, the way on which
we retrieve the associated eigenvector is the following [Qua+14a]:
Given,

λi∈[1,N]

C defined as a M ×M Matrix,

where λi is the i-th eigenvalue and C is the co-variance matrix, iterate over
each λ and do the following:

• Step 0: Initialize a RHS vector v, calculate the matrix

Mi = C − λiI

• Step 1: Solve the linear system

Mix
(k) = v

• Step 2: Re-calculate the RHS vector v as

v =
x(k)

||x(k)||

• Step 3: Calculate the approximate value of λ̃i
(k)

,

λ̃i
(k)

= vT × A× v

5

• Step 4: Go to Step 1 until :

|λ̃i
(k) − λ̃i

(k−1)| < ε & |λ̃i
(k) − λi| < ε

When we complete this cycle we store the eigenvector into a matrix and move
on to the next eigenvalue.

2.4 Find Eigenvectors with Jacobi method

In the third version of the program, the rotation matrices computed while
approximating the eigenvalues are also used to simultaneously compute the
eigenvectors of the co-variance matrix. In fact the transformations applied
in the Jacobi methods are consecutive similarity transformations and so, the
final matrix, that is diagonal, can also be obtained by applying an equivalent
similarity transformation, by mean of the product matrix of all the transfor-
mation matrices. Since that matrix transforms the input matrix in a similar,
diagonal matrix, its rows/columns are the eigenvectors of the initial matrix.

2.5 Comments on the two methods

Comparing the two methods for computing the eigenvalues, it comes out
that the first method is slower but more accurate, while the second method
is faster, but unstable and affected by numerical error. In fact, for big data
sets, the numerical error is propagated on each matrix product, and the result
is that the computed eigenvectors are completely wrong. This behavior is
particularly evident with ill-conditioned input co-variance matrix.

6

3 The method used for taking measures

The method that we use to measure the time to execute a task is based on the
getTimeOfDay [IG04] function, which allow us to retrieve the system’s clock
time. So, for counting the elapsed time for doing a task, we take a starting
and an ending time, we obtain the effective execution time by making the
difference of them. We measure 4 different parts of the code, suggested by
the structure of the algorithm:

• Time for evaluating the normalization matrix.

• Time for calculating co-variance matrix.

• Time for retrieving the eigenvalues 3.

• Time for evaluating the eigenvectors.

We take also into account the fact that one single execution may not not
sufficient for making a good report, so for each experiment we do the mea-
surement 10 times4 and collect:

• The mean execution time.

• The standard deviation.

• The minimum time of execution.

• The maximum time of execution.

The data set that has been used is composed of 561 columns and 7767 rows
of real numbers.
For each version of the program and for each machine, the experiment has
been repeated 7 times, considering different subsets of columns.

3Only for CPU and GPU1 version, because in GPU2 the eigenvalues calculation is
indeed calculated inside the eigenvectors finder method.

4The only exception is for the CPU version: for an high dimensionality feature space
we decide to do just one iteration, because the CPU version is far slower compared to the
gpu’s one.

7

4 Result

The first result that we want to emphasize is the execution time compared
on the 3 different versions of PCA, executed on our best and worst machine
(fig.1).
We can see that with the CPU version the execution time is very similar, the
things start to be different when we compare the GPU based versions, on
which we can see that the acceleration offered by GPU decrease the overall
execution time.
Another observation is that whenever we encounter small feature spaces di-
mension data set, the overhead generated by making the execution heteroge-
neous5 hides the speed-up offered by the GPU. The last consideration is that
looking asymptotically the graph, we can see that the steepness of the CPU
version is higher, compared to the GPU ones, so the speed-up is asymptoti-
cally increasing.

Figure 1: Comparison among GPU and CPU versions (on the best and worst
machine

5e.g. data transfer from/to CPU-GPU

8

A slightly different result is obtained by looking at the overall execution
time measured on all the available machines (3). As we can see the GPU
version 2 is globally faster than GPU version 1, moreover performance of
version 1 is less sensitive with respect to the number of CUDA cores (see
AXM4 and Kronos lines).
Although the speed-up gained on bigger feature spaces is much more evident
on GPU1 than GPU2.

Figure 2: Comparison between different GPU versions on all the machine.

9

To validate the results that we find, we calculate (as reference) all the
eigenvectors on MATLAB. For seeing if our program works well we calculate
the norm of the absolute value given by the difference of the result coming
from the 2 GPU versions and MATLAB (fig.2).
As we can see, with a small dimensional feature spaces both GPU1 and GPU2
give us good results, but as the spaces of the data set increase, we lose a lot
of precision on the version 2. In specific, the figure shows us the mean of
the error norm as a line over the number of features, we also show for each
experiment the maximum error that we collect (horizontal line connected to
the associated mean).

Figure 3: Comparison among GPU1 and GPU2 versions on the obtained
eigenvectors

10

For fig. 4 it is clear that most of the execution time is spent on computing
the eigenvalues and eigenvectors of the matrix, while the normalization and
the computation of the co-variance matrix take a small portion of the total
execution time. It is also clear that the speedup of the GPU version 2 is
totally due to the eigenvalues and eigenvectors computation task, since the
first two steps are identical in the two programs. For the right graph is evident
(but it is true also for GPU version 1) that the steps of normalization and
computation of the co-variance matrix scale better that the other tasks, with
increasing the number of CUDA cores.

Figure 4: Time spent in each tasks, measured on the best and worst machine,
using 200 columns as dimension of the feature space

11

Fig 5 shows how the time spent in each task by different machines changes
with the dimension of the feature space. For the two graphs of GPU version
2, we can deduce that the task of computation of eigenvectors scales worse,
not just increasing the number of available cores, but also increasing the
dimension of the problem. In the graphs of GPU version 1 it is shown that
the two tasks for computing the eigenvalues and eigenvectors have an atypical
behaviour. They both scale worse than the other tasks. However, while
for small values of dimension of the problem the last step seems to scale
better, for high values of it, the computation of the eigenvectors requires
more and more of the total execution time. This is particularly evident on
the results of the Kronos machine, and this suggests that the computation of
the eigenvectors scales worse than the computation of the eigenvalues, with
increasing the number of available cores. Moreover, the process seems not
to be about to stop: we could hypothesize that for even higher dimension of
the feature space, most of the time is spent on computing the eigenvectors.

Figure 5: time spent in the different tasks over of columns.

12

5 Conclusion

The main goal of the project has been reached: two GPU based solutions
has been proposed and tested on different machines, showing that they are
more performing than the simple scalar solution, although one of them is
numerically unstable for high dimensional feature spaces.
As expected, machines provided with more CUDA cores in their GPU are
more performing, so the programs are scalable.
Nevertheless, using a GPU could not always be the best choice, since for
small dimensional feature spaces, CPU and GPU based programs have very
similar performance.

13

A Specifications of the machines used in the

experiments

Figure 6: Table of hardware specs.

14

References

[IG04] The IEEE and The Open Group0. The Open Group Base Spec-
ifications Issue 6. publisher: IEEE Std 1003.1, 2004 Edition.
2004. url: https : / / pubs . opengroup . org / onlinepubs /

009604599/functions/gettimeofday.html (visited on 04/13/2021).

[JC16] Ian T. Jolliffe and Jorge Cadima. “Principal component analy-
sis: a review and recent developments”. In: Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences 374.2065 (2016), p. 20150202. doi: 10.1098/
rsta.2015.0202. eprint: https://royalsocietypublishing.
org / doi / pdf / 10 . 1098 / rsta . 2015 . 0202. url: https :

//royalsocietypublishing.org/doi/abs/10.1098/rsta.

2015.0202.

[Qua+14a] Alfio Quarteroni et al. “Il metodo delle potenze”. In: Alfio Quartieroni
- Matematica Numerica. 4th ed. Springer, 2014, pp. 174–179.

[Qua+14b] Alfio Quarteroni et al. “Metodi per il calcolo di autovalori di
matrici simmetriche”. In: Alfio Quartieroni - Matematica Nu-
merica. 4th ed. Springer, 2014, pp. 203–207.

15

https://pubs.opengroup.org/onlinepubs/009604599/functions/gettimeofday.html
https://pubs.opengroup.org/onlinepubs/009604599/functions/gettimeofday.html
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202

	Overview
	PCA
	Co-variance matrix calculation
	Find Eigenvalues with Jacobi method
	Find Eigenvectors with inverse power method
	Find Eigenvectors with Jacobi method
	Comments on the two methods

	The method used for taking measures
	Result
	Conclusion
	Specifications of the machines used in the experiments

