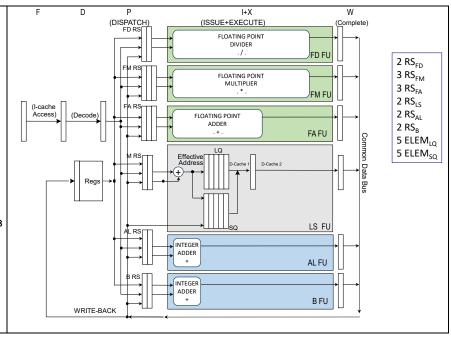
(FORMER "CALCOLATORI ELETTRONICI 2")


SURNAME

REVISED 26-10-2023

FIRST NAME

• (POINTS 14/40) Consider the following snippet of code running on a processor that uses the Tomasulo's algorithm to perform the dynamic scheduling of instructions. The program performs the operation Y=aX/Y on a vector of 100 elements. Initially, R1 = 0 and F0 contains the value of the constant 'a'.

```
; read Xi
etic: L.D
           F2, 0(R1)
     MUL.D F4, F2, F0 ; multiply a*Xi
           F6, 400(R1); load Yi
     L.D
    DIV.D F6, F4, F6 ; a*Xi/Yi
     S.D
           F6, 400(R1); store Yi
     ADDI R1, R1, 8
                         update R1
     SGTI
           R3, R1, 800; R1 >? 800, result in R3
    BEO
           R3, R0, etic; continue to loop if
     false
```


Working hypothesis:

- the pipeline implements a single-dispatch policy
- the instructions after a branch are executed speculatively and predicted 'taken'
- high-performance fetch breaks after fetching a branch
- the issue stage (I) calculates the address of the actual reads and writes
- reads require 1 clock cycle; writes require 1 clock cycles
- when accessing memory (M), writes have precedence over reads and must be executed in-order
- there is a single CDB
- dispatch stage (D) and complete stage (C) require 1 clock cycle
- there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition
- the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
- the load buffer has 5 slots
- the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)
- the rest of the processor and has the following characteristics

Type of Functional Unit	No. of Functional Units	Cycles for stage I+X	No. of reservation stations
Integer (effective addr.)	1	1	2
Integer (op. A-L)	1	1	2
Integer (branch calc.)	1	1	2
FP Adder	1	4	3
FP Multiplier	1	8	3
FP Divider	1	15	2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.

Iter.	Instruction	ı	P disPatch (start-stop)	I+X Issue (start-stop)	M MEM ACCESS (clock)	W CDB-Write (Complete) (clock)	C Commit (clock)	Comments
1	L.D	F2,0(R1)	1-4	2	3	4	5	

- (POINTS 10/40) For the same fragment of code of exercise 1, let's assume a single-pipeline processor such that the branch condition is solved in the decode stage, so that we have only 1 cycle for the delay slot. Moreover, let's assume that:
 - The dispatch and complete stage requires 1 cycle
 - There are the following latencies between operations:

Producer Instruction	Consumer Instruction	Latency (clock cycles)
FP operation	FP operation	4
FP operation	Store double	2
Load double	FP operation	2
Load double	Store double	1

The pipeline is single-dispatch: calculate the execution time (in cycles) of a single loop and show where there are stalls with and without static scheduling of the instructions (without unrolling techniques).

- (POINTS 8/40) Explain the operation and draw a diagram of a PAg branch 2-level predictor with a 12-bit BSHR and size 2¹² x 2 bit for the PHT.
- (POINTS 8/40) Given the sequence P1: R, P2: R, P3: R, P1: W, P2: W, P3: W (Px:R = read by the processor Px, Px:W write by the processor Px), with respect to a certain variable 'a', show for each processor the sequence of states, and transactions on the bus that occur in a multiprocessor UMA with write-back caches for each processor and DRAGON coherence protocol.

EXERCIZE 1

Iter.	Instruction		+X Issue start-stop)	M MEM- ACCESS	W CDB-Write (Complete)	C Commit (clock)	Comments
1	L.D F2,0(R1)	1-4	2	(clock)	(clock)	5	
1	MUL.D F4,F2,F0		5-12 4	-	13	14	I waits F2 from 1/L.D
1	L.D F6,400(R1)		4	5	6	15	T WARREST E TOTAL TABLE
1	DIV.D F6,F4,F6		14-28		29	30	I waits F4 from 1/MUL.D
1	S.D F6,400(R1)		6	30		31	I waits F6 from 1/DIV.D
1	ADDI R1,R1,8	6-8	7	1	-(8)	32	
1	SGTI R3,R1,800	7-10	9 🕶	1	10	33	I waits R1 from 1/ADDI
1	BEQ R3,R0,etic	8-11	11			34	I waits R3 from 1/SGTI
2	L.D F2,0(R1)	9-12	10	11/	12	35	
2	MUL.D F4,F2,F0	10-21	13-20	7/	21)	36	I waits F2 from 2/L.D
2	L.D F6,400(R1)	11-14	12	13	14	37	
2	DIV.D F6,F4,F6	12-44	29-43	1	44	45	I waits F4 from 1/MUL.D
							e free DIV-FU
2	S.D F6,400(R1)	13-13	<mark>14</mark> /	45		46	I waits F6 from 2/DIV.D
2	ADDI R1,R1,8	14-16	15 /		-16	47	
2	SGTI R3,R1,800	15-18	17/	7_	-18	48	I waits R1 from 2/ADDI
2	BEQ R3,R0,etic	16-19	19			49	I waits R3 from 2/SGTI
3	L.D F2,0(R1)	17-20	1/8	19	_ 20	50	
3	MUL.D F4,F2,F0	18-30	21-28		30	51	I waits F2 from 2/L.D e
		16-30			30	31	CDB waits bus free
3	L.D F6,400(R1)		20	21	22	52	
3	DIV.D F6,F4,F6	30-59	44-58		(59)	60	D waits available DIV-RS,
							I waits free DIV-FU
3	S.D F6,400(R1)		<mark>32</mark>	<mark>60</mark>		61	I waits F6 from 3/DIV.D
3	ADDI R1,R1,8		33		- (34	62	
3	SGTI R3,R1,800	33-36	35		-(36)	63	I waits R1 from 3/ADDI
3	BEQ R3,R0,etic	34-37	37			64	I waits R3 from 3/SGTI