
A Case Study on the Design Trade-off of a  
Thread Level Data Flow based Many-core Architecture  

 

Zhibin Yu, Andrea Righi, Roberto Giorgi 
Department of Information Engineering 

University of Siena (UNISI) 
Via Roma, 53100, Siena, Italy 

 
 
 

Abstract— With the potential of overcoming the memory and 
power wall, the many-core/multi-thread has become a trend in 
processor design area. However, this architecture is far from 
ripeness because it also companies with many challenges such as 
scalability and larger architecture design space compared with 
mono-core architectures. In many-core design space, Data-Flow 
based architectures are alternatives that deal with concurrency, 
long memory latencies, and synchronization stalls efficiently. 
Nevertheless, even in this sub-area, there are still a lot of factors 
affecting the scalability and performance of the architecture. In 
this paper, we explore the design trade-offs for Decoupled 
Threaded Architecture (DTA) which is a data-flow many-core 
architecture. By using a well known bio-informatics benchmark, 
ClustalW, we evaluate various DTA configurations with different 
number of synchronization and execution pipelines. We find that 
the configuration which consists of two synchronization pipelines 
(SP) and one execution pipeline (EP) for each processing 
element(PE) achieves almost the same performance as the 
configuration consisting of two SPs and two EPs for each 
processing element. By employing the former configuration, we 
can save 32.5% of the area required for each DTA processing 
element. 

    Keywords-Multi-threaded;Many-core;Scalability;Programability; 
Dataflow architecture. 

I.  INTRODUCTION 
Due to the limited performance gains from mono-core 

architectures, the industry has already shifted gears to deploy 
architectures with multiple cores and threads [22]. Although 
multi/many-core architectures promise a significant 
performance potential, it is not trivial to obtain performance 
improvement from these architectures. Besides traditional 
difficulties, new challenges such as scalability and 
programmability are arising. Further, the design space of 
multi/many-core architectures is much larger than that of 
mono-core architectures, leading more difficulties to design 
them. The Data-Flow architecture [2] is an alternative that 
deals with concurrency, long memory latencies, and 
synchronization stalls efficiently. We have designed a multi-
threaded architecture named Decoupled Threaded Architecture 
(DTA) based on Data-flow architecture [1]. 

Decoupled Threaded Architecture (DTA) is a multi-
threaded architecture based on the Scheduled Data Flow (SDF) 
execution paradigm. The way in which data is communicated 
among threads and the decoupling of memory accesses from 
execution are the main differences between DTA/SDF and 
other multithreaded programming models. Data is exchanged 

between threads via frames which are portions of local memory 
assigned to each thread. Each thread is associated with a 
Synchronization Counter (SC) that represents the number of 
input data needed by the thread. This counter decreases each 
time when a datum arrives in the thread's frame. Once it 
becomes zero, which means all needed input data are ready, the 
thread is ready to execute. In this way, DTA provides dataflow 
at thread level and a non-blocking synchronization. This is one 
of the key differences between the DTA and the original Data-
flow architecture which provides dataflow at instruction level. 

In this paper, we provide a case study for the design trade-
off our previously proposed DTA architecture. We employ the 
well-known bio-informatics application Clustal-W to evaluate 
various DTA configurations. Especially, we look for the 
optimal combinations of the number of synchronization and 
execution pipelines. We show that the configuration of 2 SPs 
and 1 EP achieves the same performance as that of 2 SPs and 2 
EPs. Therefore, we can save 32.5% of the area required for 
each DTA processing element by using the former 
configuration. 

The rest of this paper is organized as follows. Section II 
briefly describes an overview of the DTA architecture. Section 
III provides an analysis of the benchmark Clustal-W. The 
experimental methodology is given in Section IV and Section 
V provides the results and analysis. Section VI surveys the 
related work and we conclude the paper in Section VII. 

II. OVERVIEW OF THE DTA ARCHITECTURE 

A.  The Execution Model  
      DTA executes TLP (Thread Level Parallelism) activities 
of a program — portions of a program that exhibits Thread 
Level Parallelism (TLP). A Compiler (or a programmer) 
identifies parallel parts of the program and marks them as TLP 
activities. When these activities are encountered during 
execution, they are launched to the DTA hardware where they 
are executed in parallel. For example, in the DTA 
implementation on the Cell processor [3], TLP activities are 
launched by the general purpose processor (Power PC) to the 
DTA-enabled Synergistic Processor Elements that execute 
DTA threads. 
       The DTA architecture decouples the memory accesses 
from execution. This helps the threads exchange data in the 
data flow manner. To achieve this, a new memory concept, 
frames which are portions of local memory assigned to each 
thread, is introduced. One thread has one frame which is used 



to store the input data for the thread. In order to indicate 
whether all the input data needed by a thread is in the 
corresponding frame, the DTA architecture employs a 
Synchronization Counter (SC). This counter represents the 
number of input data needed by a thread. When one datum of 
a thread arrives at its frame, the SC of it decreases by one. 
Once a SC becomes zero, the corresponding thread is ready to 
execute. The execution of each DTA thread can be split into 
three phases: load, execution, and store. In the load phase, 
input data are loaded from the frame memory; in execution 
phase, the thread is executed; in the store phase, the outputs of 
the thread are written to the frames of other threads. 
Preemptive execution is not allowed and a thread voluntarily 
releases the processor each time when it switches between 
phases. Therefore, the memory access of a thread is decoupled 
from the execution of it. 
     An example of thread synchronization in DTA is shown in 
Figure 1. Thread th0 executes first and creates threads th1, th2 
and th3. Since the thread th1 needs two input variables a and 
b, its SC is set to 2 when the thread is created. Similarly, the 
SCs of threads th2 and th3 are set to 1 and 2 respectively at the 
beginning. When th0 executes the first STORE instruction 
(used to send data to another thread), it will store a into the 
frame of the thread th1. Meanwhile, the SC of th1 is decreased 
by 1. After the second STORE, the SC of th1 becomes 0 and 
th1 is ready for its execution. When the third STORE of th0 
completes, th2 is also ready and both threads (th1 and th2) can 
run in parallel if there are two cores available. When their 
execution completes, the output data are stored into the frame 
of thread th3. 
 

LOAD, a
LOAD, b

STORE th3, d

STORE th1, a
STORE th1, b
STORE th2, c

LOAD, c

STORE th3, e

LOAD, d
LOAD, e

Thread 0

Thread 1
SC=2

Thread 2
SC=1

Thread 3
SC=2

Thread th0 sends data to thread th1
and th2 by writing into their frames
(STORE instructions). threads th1
and th2 read them from their own
frames(LOAD instructions). Thread
th1 and th2 can run in parallel.

Thread th3 is synchronized with
thread th1 and th2 since its execution
will not start before all data (2 in this
case) is stored into its frame.

a,b c

d e

     
Figure 1. An example of thread synchronization  

     To overcome the long wire delay issue [4], the DTA 
architecture clusters resources into nodes, a different approach 
from the SDF architecture. Figure 2 shows the overview of our 
DTA architecture. As shown in Figure 2, each node contains 
several processing elements (PE) that are interconnected via a 
fast and simple intra-node network. Each node is dimensioned 
so that all PEs in a single node can be synchronized by using 
the same clock. The Nodes are connected by a slower inter-
cluster network. 

B.  The DTA Architecture 
     The DTA architecture employs two kinds of schedulers to 
schedule workloads among the computing elements: 
Distributed Scheduler Elements (DSEs) and Local Scheduler 
Elements (LSEs), which are illustrated in Figure 2. Each PE 
contains one LSE that manages local frames and forwards 
request for resources to the DSE. For example, when a remote 
store arrives at a local frame of a thread, the LSE decreases the 
SC of the thread and stores the datum to the frame. When a PE 
requests a new frame, the request is forwarded to the DSE. 
Each node contains one DSE that balances the workloads 
among processors in the node. The elements of the schedulers 
communicate with each other by using messages [1]. 
 

Figure 2. DTA architecture design. A processing element 
(PE) is composed of many execution pipelines (EP) and 
synchronization pipelines (SP) with common register sets, 
frame, data,  and instruction cache. Processing elements 
are grouped by nodes to break scalability limits.  

      There are two types of memory in the DTA architecture:  
• Frame Memory (FM). It is private for each thread 

and contains input data for the thread;  
• Global Memory (GM). It is shared among threads 

and is accessible via the inter-cluster network;  
Both frame memory and global memory use a direct- mapped 
cache of 32KB (no additional overhead is considered in case 
of cache hits) to reduce the memory latency. Reading from 
frame memory is always faster than reading from global 
memory. On the other hand, writing data to both types of 
memory is always non-blocking since the LSEs take the write 
request and process it. The PE is free to continue executing as 
soon as possible after the request is passed to a LSE. In order 
to reduce the memory latency, DTA programs tend to use the 
frame memory as much as possible. 

C. The Processing Element 
     The processing elements in DTA can be either off-the-shelf 
processors or specialized DTA processors with separate 
pipelines for different phases of each thread. When off-the-
shelf processors are used, they need to be modified in order to 
include LSE, frame memory (usually cache or local store is 



used [3]) and several DTA-specific instructions which are 
used to manage the lifetime of threads and exchange data 
among threads. In order to extract precise statistic information 
for each phase of a thread’s execution, we use DTA-specific 
processing elements in this study. 
     Each PE contains several pipelines, a register set, a frame 
memory, and a Local Scheduler Element. There are two types 
of pipelines in each PE: Synchronization Pipeline (SP) and 
execution pipeline (EP). SP is responsible for executing load 
and store phases. EP is responsible for the execution phase of 
a thread. All pipelines in the PE share the same register set. 
When a thread starts to execute, the LSE assigns one of the 
available register sets to it. Then the thread passes trough 
different pipelines to execute its load, execution and store 
phases. When the thread finishes its execution, its frame and 
register set become available for other threads. 
      All requests that originate from a PE (either for memory 
accesses or for new resources) are handled by its LSE. If the 
request is local (mapped to internal frame memory), then it is 
served immediately. On the other hand, in case of a request for 
remote resource (new frame or a remote memory location), the 
LSE forwards the request to the DSE (in case of a request for a 
new frame or a store to a remote frame) or to the main 
memory (in case of a request for a remote memory location). 
In the both cases, the request must pass through intra-cluster 
network, causing a longer latency. 

D. Terminologies 
      In this paper we use the following terminologies to 
differentiate the types of threads:  

• Pthread: a thread created by an application [5]. 
These threads are specified by the programmer and 
can have arbitrary length.  

• DTA-thread: a sequence of load, execution and store 
phases. Each pthread contains many small DTA 
threads that are generated by the compiler. 

III. THE ANALYSIS OF CLUSTAL-W 
 
      In molecular biology, Clustal-W [6] is an important 
program for the simultaneous alignment of nucleotide or 
amino acid sequences. It implements the most widely used 
approach of multiple sequence alignments that use a heuristic 
search known as progressive alignment. However, the 
progressive alignment algorithm suffers a high computational 
complexity and consequently it may take a lot of time to 
complete. A traditional technique to speedup this task is to 
parallelize the application as much as possible. As a result, the 
progressive alignment algorithm is a perfect candidate to fully 
utilize the machine resources and to stressfully test the overall 
performance as well as the scalability of massive parallel 
systems. 
    In this work, we use the parallel implementation of Clustal-
W that comes from the BioPerf [7] benchmark suite. This 
version of Clustal-W is divided in three phases:  

1) The first phase, pair-wise alignment, takes between 
60% and 80% of the execution time in a traditional 
uni-processor machine.  

2) The second stage forms a phylogenetic tree using the 
Neighbor-Joining algorithm with the aligned 
sequences generated at the previous step.  

3) The third step progressively aligns the sequences 
according to the tree branching order obtained at the 
second step.  

In order to better understand the performance of Clustal-W, 
we characterize it by using Oprofile [8]:  
 
Counted CPU_CLK_UNHALTED events 
samples      %             image name            symbol name 
526230   50.0853        clustalw-smp             parallel 
271232   25.8152        clustalw-smp             pdiff_reverse 
215633   20.5234        clustalw-smp             pdiff_forward 
15849     1.5085          clustalw-smp             pdiff 
14632     1.3926          clustalw-smp             calc_prf1 
2535      0.2413           clustalw-smp             diff 
1731      0.1648           clustalw-smp             prfalign 
1534      0.1460           clustalw-smp             aln_score 

 
The above profiling results show that the pairwise alignment  
— function parallel() — is the most CPU-consuming part of 
the execution. Over 50% of execution time spent in it. Hence, 
we focused our analysis on this function. 

IV. EXPERIMENTAL METHODOLOGY  

A.  The Methodology 
      As a starting point, we use the Clustal-W implementation 
that is parallelized at the application level by using Pthreads 
primitives. In order to better utilize the underlying 
architecture, the pthread library was implemented by using 
DTA assembly primitives. Whenever a new pthread is 
requested in the code, the compiler creates a DTA thread to 
exploit the dataflow execution model. Instead of relying on 
locking and semaphores, pthread primitives for 
synchronization are written to rely on the synchronization 
counters and the dataflow communications that are supported 
by the DTA hardware. 
     The standard ANSI-C version of Clustal-W is translated 
into DTA assembly code by using a modified Scale [18] 
compiler. This compiler is extended with a DTA backend and 
custom implementation of libraries for the generic I/O 
operations (open(), read(), write(),  . . . ). The tests are 
executed on a DTA simulator which is based on the code of 
sdfsim-3.0.0 [19].  
    For the input dataset, we use the standard input dataset from 
the BioPerf suite, 1290.seq (66 sequences of length almost 
1100). The input is replicated 32 times to create at least  
512 workers via pthread_create() and to avoid “empty” 
worker threads. All the created threads have a non-empty input 
sequence to align. The total number of sequences to be aligned 
during each run is 66 x 32 = 2112. 



B. The Decomposition of the code 
       Since the main goal of this work is to better understand 
the TLP exploitation from the point of view of the 
architecture, we focused on the statistics for the highlighted 
section of the code (see Section III). This section starts after 
all threads are created. Namely, it starts after the call to the 
function pthread_cond_broadcast(). 
      As mentioned before, the main idea is to allow the DTA to 
coexist with other types of processors in the system (e.g. 
general purpose processors) and to launch only the parallel 
part of the code to a dedicated DTA hardware. In this way, the 
General Purpose Processor (GPP) executes only for the 
sequential part of the application. The GPP can be optimized 
to exploit the available Instruction Level Parallelism (ILP) of 
the program that is not suitable for DTA. On the other hand, 
the TLP-optimized DTA hardware runs the threaded portion of 
the code. By analyzing the code and the arguments of 
pthread_create() function, it is fairly easy to identify the 
portion of the code that has the high degree of parallelism. 
Therefore, even at compile time, we can decide how to split 
the code into sequential and parallel parts. 

V. RESULTS AND ANALYSIS 
      Firstly, we estimate the instruction mix that is created at 
runtime: 

      

Total number of instructions:                  2,323,534,075 
Total frame-memory references:            1,097,224,437 
Total data-memory reference:                 91,925,906 
Total READs from frame:                         548,612,219 
Total WRITEs to frame:                            548,612,218 
Total READs from memory:                     78,648,743 
Total WRITEs to memory:                        13,277,163 
Total number of DTA-threads created:     50,259,676 
Instructions per DTA-thread (average):    47.2305 

 
       As we can see from the dynamic statistics, 51.12% of the 
instructions are memory accesses but only 3.96% of them are 
the data memory access. The 96.04% of memory accesses 
goes to the frame memory and these accesses are used for the 
communication among DTA-threads. This is evidence that the 
compiler is able to generate many smaller DTA threads inside 
each thread created by pthread library. Since the frame 
memory locates near the processor, the advantage of DTA is 
to leverage this memory for communication among threads 
instead of using other ways of communication (e.g. function 
calls with a stack frame). 
     The second set of experiments test the scalability of several 
different configurations of DTA while varying the miss 
latency. The results are shown in Figure 4 and Figure 5. In the 
DTA architecture, the stalls in the pipelines are only a 
consequence of LOAD misses. These stalls delay the fetch and 
completion of future instructions. Therefore, only the 
Synchronization Pipelines are affected by pipeline stalls. 
Increasing the memory latency reduces the contribution of the 
EPs to the total execution time. On the other hand, the activity 
of SPs strongly influences the performance in terms of total 
execution time and speedup. This can be seen from the graphs 
for execution time since the configuration with 2 SPs and 1 EP 

performs almost as well as the configuration with 2 SPs and 2 
EPs. Also, increasing the memory latency gives better speedup 
(but the execution time increases also) since there is a higher 
probability to use more SPs. 
       When the latency is increased, the amount of stalls in SPs, 
as shown in Figure 6, is also increased so do the number of 
threads in the system as illustrated in Figure 7. The number of 
threads is increased because there are many new threads are 
waiting. If we have a longer stall in a pipeline and a new 
DTA-thread arrives, there is a less probability to find an 
available SP that can start to execute the load phase of the 
thread. This means that the benefit of increasing the number of 
SPs is greater than increasing the number of EPs when the 
memory latency increases. 

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 1  2  4  8  16  32  64  128  256  512

C
lo

ck
 c

yc
le

s 
(in

 m
ill

io
ns

)

PEs

ClustalW 512 pthreads pairalign()
Total execution time of the parallel code: when all the threads start

(logarithmic scale)

 1  ticks, 1EP + 1SP
25  ticks, 1EP + 1SP
50  ticks, 1EP + 1SP
 1  ticks, 1EP + 2SP

25  ticks, 1EP + 2SP
50  ticks, 1EP + 2SP

Figure 4 Total execution cycles with variant PE configurations and 
Load miss latency. Memory latencies are  1, 25, and 50 clock cycles 
(ticks) 

 
      This fact is due to the memory latency issue and execution 
model. Statistically, at any time of the execution of a program, 
2/3 of the available DTA-threads need to be served by a SP 
(due to load and store phases) and only 1/3 of the threads need 
an EP to continue their execution. This is also in line with the 
obtained results on execution time and speedup that are 
discussed above. Hence, in a dataflow base multithreaded 
architecture, it is possible to get the same performance by 
using a cheaper configuration, namely, by decreasing the 
number of architectural elements that are dedicated to 
calculations (EPs) and by increasing the number of 
architectural elements dedicated to communication (SPs). 

     To quantify the area saved by decreasing the number of 
EPs, we evaluated the number of transistors and the required 
area for all configurations that we used in our experiments. 
Our method is based on the analytical method provided by the 
"SimpleScalar directed estimation tool" [20]. This tool takes 
the number of functional units (such as ALUs, Load/Store 
units,...) as input and produces the estimate of required 
transistor count and the area. The results are displayed in 
Table 1. As shown in Table 1, the "1 EP + 2 SPs" 
configuration saves about 32.5% of the eara with respect to the 
"2 EPs + 2 SPs" configuration while keeps the same 



performance, leading to a space and energy efficient 
architecture.     

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1  2  4  8  16  32  64  128  256  512

S
pe

ed
up

PEs

ClustalW 512 pthreads pairalign()
speedup

(logarithmic scale)

ideal speedup
 1  ticks, 1EP + 1SP

25  ticks, 1EP + 1SP
50  ticks, 1EP + 1SP
 1  ticks, 1EP + 2SP

25  ticks, 1EP + 2SP
50  ticks, 1EP + 2SP

Figure 5. Speedup with different PE configurations and LOAD miss 
latency. The memory latencies are 1, 25, and 50 clock cycles 
(tickets). 

                                            VI.    RELATED WORK  

       Several researchers in the past have studied the 
performance of multiple versions of parallel Clustal-W in a 
wide range of different multi-core architectures. The solution 
presented by [9] uses message-passing libraries on a PC 
cluster (ClustalW-MPI). Besides the software approach, new 
approaches that are using reconfigurable hardware (such as 
FPGA) have been presented [10]. Vandierendonck et al. [11] 
explored the performance of a Clustal-W implementation 
optimized for the Cell BE architecture (ClustaIW-Cell). Liu et 
al. also explored the optimizations of Clustal-W using the 
GPU acceleration of nvidia GeForce 7800 GTX (ClustalW-
GPU) [12].  
      From the hardware perspective many decoupled 
architectures have appeared in the past few years. Speculative 
Data- Driven Multithreading [13] is an architecture that is 
based on decoupling principle. This architecture identifies 
miss streams, i.e. streams of instructions that are likely to 
cause cache misses and executes them in a multithreaded 
fashion in order to perform pre-fetching. HiDisc (Hierarchical 
Decoupled Instruction Stream Computer) [14] is an 
architecture that reduces memory latency by pre-fetching at 
both hardware and software level. Pre-fetching is 
accomplished by separating the instruction stream into one for 
regular execution and one for memory accesses.  
       Moreover, multi-core/many-core architectures have 
gained the most attention in the industry recently. IBM 
Cyclops-64 (C64) [15] is a multi-core-on-a-chip processor that 
consists of 80 processors (or cores). Each processor has two 
SRAM memory banks that can be configured either as 
scratchpad or global memory. Plurality [16] is a multi-core 
system that uses a pool of RISC processors with uniform 
memory, hardware scheduler, synchronizer and load balancer. 
SUN Microsystems UItraSPARC T2 [17] is a multithreading 
multi-core chip capable of running 64 threads at the same 
time. The main difference between the existing architectures 

and DTA is that DTA is a multithreaded architecture that uses 
the scheduled dataflow programming model and decouples 
 
      
 
 
 
 

Element Number of Transistors Area (in M 2λ ) 
1 EP 419,597 685.47 
1 SP 225,554 368.49 

1 PE = 2 EP + 2 SP 1,290,302 2,107.92 
1 PE = 1 EP + 2 SP 870,705 1,422.45 

TABLE I 
AREA AND TRANSISTOR USAGE ESTIMATION: 

PIPELINES AND DIFFERENT PROCESSING ELEMENTS

        

 0

 50

 100

 150

 200

1 2 4 8 16 32 64 128 256 512

U
sa

ge
 (

%
)

PEs

Average pipeline usage

EP running
SP running

SP stall

 
                                           (a) 

 0

 50

 100

 150

 200

1 2 4 8 16 32 64 128 256 512

U
sa

ge
 (

%
)

PEs

Average pipeline usage

EP running
SP running

SP stall

 
                                 (b) 

 0

 50

 100

 150

 200

1 2 4 8 16 32 64 128 256 512

U
sa

ge
 (

%
)

PEs

Average pipeline usage

EP running
SP running

SP stall

 
                                  (c) 

Figure 6. Average pipeline usage (1PE = 1 EP + 1 SP) 
with a Load miss latency of 1, 25, and 50 clock 
cycles, denoted by (a), (b), and (c). Total usage can be 
greater than 100% when EP and SP code are executed 
in parallel  



 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350
 375
 400
 425

1 2 4 8 16 32 64 128 256 512

A
ve

ra
ge

 n
um

be
r 

of
 th

re
ad

s 
pe

r 
pi

pe
lin

e

PEs

EP
SP

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350
 375
 400
 425

1 2 4 8 16 32 64 128 256 512

A
ve

ra
ge

 n
um

be
r o

f t
hr

ea
ds

 p
er

 p
ip

el
in

e

PEs

EP
SP

 

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350
 375
 400
 425

1 2 4 8 16 32 64 128 256 512

A
ve

ra
ge

 n
um

be
r 

of
 th

re
ad

s 
pe

r 
pi

pe
lin

e

PEs

EP
SP

(a) 

(b) 

(c) 

Figure 7. Average number of DTA-threads running in EPs and 
SPs using different LOAD miss latencies: 1, 25, 50 clock 
cycles(ticks)  

the memory accesses from the threads’ execution. 

VII.        CONCLUSION  
        This paper analyzes the tradeoffs in design of a multi- 
threaded architecture, and their effect on the exploitation of 
the Thread Level Parallelism. By using the bio-informatics 
application Clustal-W as a benchmark, we evaluate our 
Decoupled Threaded Architecture (DTA) with different 
number of architectural elements that are dedicated for 
computation and for communication among threads.  
We have experimentally verified that the contribution of the 
hardware dedicated to communication (Synchronization 

Pipelines — SPs) is much greater than the contribution of the 
hardware dedicated to computation (Execution Pipelines  
— EPs). This shows that our architecture is based on the 
coarse-grained dataflow execution model that emphasizes the 
communication in a producer-consumer fashion. We found 
that the configuration in which each Processing Element (PE) 
is composed of 1 EP and 2 SPs is able to achieve the 
performance which is very close to that of the configuration 
with “2EP + 2SP”. This can save the area of each PE and 
obtain benefits in terms of power significantly.  

ACKNOWLEDGEMENTS 
       We thank Prof. Krishna Kavi for providing the modified 
Scale compiler and for his useful comments. This work was 
partly funded by the European FP7 project TERAFLUX id. 
249013[21], HiPEAC IST-217068, and IT PRIN 2008 
(200855LRP2). 

REFERENCES 
[1] R. Giorgi, Z. Popovic, and N. Puzovic, “Dta-c: A decoupled multi-

threaded architecture fhr cmp systems,” in Proceedings of IEEE SBAC-
PAD, Gramado, Brasil, Oct. 2007, pp. 263-270. [Online]. Available: 
http://www.dii.unisi.it/ popovic/docs/Giorgi-DTA.pdf  

[2] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled dataflow: Execution 
paradigm, architecture, and performance evaluation,” IEEE 
TRANSACTIONS ON COMPUTERS, pp. 834-846, 2001. 

[3] R. Giorgi, Z. Popovic, and N. Puzovic, “Introducing hardware TLP 
support or the Cell processor,” in Proceedings of IEEE International 
Workshop on Multi-Core Computing Systems. Fukuoka, Japan. Los 
Alamitos, CA, USA: IEEE Computer Society, Mar 2009, pp. 657-662. 

[4] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proceedings of 
the IEEE, vol. 89, no. 4, pp. 490-504, Apr 2001.  

[5] B. Nichols, D. Buttlar, and J. P. Farrell, “Pthreads programming: A 
POSIX standard for better multiprocessing,” Reilly, California, 1996. 

[6] J. D. Thompson, D. G. higgins, and T. J. Gibson, “CLUSTAL w:  
improving the sensitivity of progressive multiple sequence alignment 
through sequence weighting, position-specific gap penalties and weight 
matrix choice,” NUCLEIC ACIDS RESEARCH, vol. 22, pp. 4673-4673, 
1994. 

[7] D. A. Bader, Y. Li, T. Li, and V. Sachdeva, “BioPerf: a benchmark suite 
to evaluate high-performance computer architecture on bioinformatics 
applications,” in Proceedings of the IEEE International Workload 
Characterization Symposium. 2005, pp. 163-173. 

[8] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” Web site:  
http://oprofile. sourceforge. net , 2005. 

[9] K. B. Li, “ClustalW-MPI: ClustalW analysis using distributed and 
parallel computing,” Oxford Univ Press, 2003, vol. 19. 

[10] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, and D. Maskell, “Using 
reconfigurable hardware to accelerate multiple sequence alignment with 
ClustalW,” Oxford Univ Press, 2005, vol. 21. 

[11] H. Vandierendonck, S. Rul, M. Questier, and K. D. Bosschere,  
“Experiences with parallelizing a bio-informatics program on the cell  
BE,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 4917, p. 161,  
2008. 

[12] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “GPU-ClustalW:  
using graphics hardware to accelerate multiple sequence alignment,”  
LECTURE NOTES IN COMPUTER SCIENCE, vol. 4297, p. 363,  
2006.  

[13] A. Roth and G. S. Sohi, “Speculative Data-Driven multithreading,” in 
Proceedings of the 7th International Symposium on High-Performance 
Computer Architecture, vol. 37, 2001. 

[14] W. W. Ro, S. P. Crago, A. M. Despain, and J. L. Gaudiot, “Design and 
evaluation of a hierarchical decoupled architecture,” The Journal of 
Supercomputing, vol. 38, no. 3, pp. 237-259, 2006. 



[15] G. Almási, C. Cacaval, J. G. Castaños, M. Denneau, D. Lieher, J. E. 
Moreira, and II. S. Warren, Jr., “Dissecting cyclops: a detailed analysis 
of a multithreaded architecture,” SIGARCH Comput. Archit. News, vol. 
31, no. 1, pp. 26-38, 2003. 

[16] “Plurality architecture.” [Online]. Available:  
http://www.plurality.com/architecture.html.   June 29, 2011.  

[17] M. Shah, J. Barreh, T. Brooks, R. Golla, G. Grohoski, N. Gura,  
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, et al., “UItraSPARC  
T2: A highly-treaded, power-efficient, SPARC SOC,” in Solid-State  
Circuits Conference, 2007. ASSCC’07. IEEE Asian, Jeju, Republic of  
Korea, 2007, pp. 22-25. 

[18] K. S. McKinley, J. Burrill, M. D. Bond, D. Burger, B. Cahoon,  
J. Gibson, J. E. B. Moss, A. Smith, Z. Wang, and C. Weem, “The  
Scale compiler,” Technical report, University of Massachusetts, 2001.  
http://ali-www. cs. umass.-edu/scale, 2005. 

[19] SDFsim 3.0.0, http://csrl.unt.edu/sdf/sdfhowto.php  June 29, 2011. 
[20] M. Steinhaus, R. Kolla, J. L. Larriba-Pey, T. Ungernr, and M. Valero, 

“Transistor count and Chip-Space estimation of simulated 
microprocessors,” Research report UPC-DAC-2001-16, UPC Barcelona 
Spain, 2001. 

[21] http://www.Teraflux.eu  June 29, 2011. 
[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, N. P. 

Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling 
Framework for Multicore and Manycore Architectures,” in Proceedings 
of the 42nd Annual IEEE/ACM International Symposium on 
Microarchitecture, IEEE Computer Society, Dec 2009, Notre Dame, IN, 
USA, pp. 469-480. 

 

 


