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ABSTRACT
Given the constantly growing complexity of multi-core ar-
chitectures, Design Space Exploration (DSE) tools play an
important role to evaluate different design options. In this
paper, we present a DSE toolset targeting massively paral-
lelized HW/SW architectures with a high degree of flexibil-
ity in order to successfully simulate multi-core-multi-node
platforms. Our DSE tools provide a rapid and simple-to-use
work-flow to easily retrieve and analyze the key metrics and
eventually evaluate the design. We examine the DSE toolset
and methodology while performing several simulations of a
general purpose 1K-core architecture and evaluate not only
standard metrics like the L2 cache miss rates, but also oper-
ating system activity and its impact. We leverage the knowl-
edge gained in our methodology to develop and evaluate a
novel dataflow execution model named “DataFlow-Threads”
(DF-Threads). We validated the outcomes of the simulator
against an equivalent FPGA-based design.

Keywords
Design Space Exploration; Simulation; Performance Analy-
sis and Design; Multi-Core

1. INTRODUCTION
Recently, in order to match the performance request with

the design requirement, researchers more than ever rely on
the heterogeneous and domain-specific architectures [24]. Fu-
ture architectures may be composed of thousands of tightly
coupled cores (CPUs and GPUs), residing nearby accel-
erators, and become more complex than current ones [3].
Moreover, modern embedded systems are increasingly based
on heterogeneous Multi-Processor SoC (MP-SoC) architec-
tures. To cope with the design complexities of such archi-
tectures, Design Space Exploration (DSE) is an important
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portion of the design flow. DSE and its automation is a sig-
nificant part of modern performance evaluation and estima-
tion methodologies in order to reduce the design complex-
ity, time-to-market, and find the best compromise among
design constraints in respect to the application. Computer
designers, therefore, rely on simulations as part of the DSE
work-flow to perform early-stage design assessments in or-
der to save time and costs. A simulator not only ensures
the functional correctness but also may provide an accurate
timing information.

We started to develop DSE tools within the TERAFLUX
project [7] in order to evaluate a complex architecture with
e.g., 1000 general purpose cores and running a full OS like
Linux. In this paper, we present a set of DSE tools and ex-
periments that we made by the COTSon simulator during
the AXIOM project [1, 8, 9, 12, 29, 30] and the TERAFLUX
project. Our DSE tools permit us to model features of ar-
chitectures which are not yet available on the market in a
rapid way, we were able to easily evaluate several execution
models such as Cilk, OpenMPI, and a novel execution model
like DataFlow-Threads (DF-Threads) [14, 18, 31] either for
embedded [11] or for multi-core [10] systems.

The remainder of this paper is organized as follows: in
Section, 2 we discuss the important challenges and issues
regarding the exploration of an architecture; in Section, 3 we
outline our DSE toolset and present our simulation platform;
in Section, 4 we evaluate our DSE through different types
of test case and discuss the evaluation results; in Section,
5 we highlight some related DSEs and scholar evaluation
platforms, and finally, we conclude the paper in Section 6.

2. PROBLEM STATEMENT
Evaluation of a multi-core architecture even at the pro-

totype stage is quite challenging, time-consuming. More-
over, it is not always possible to get the “perfect” setup,
and hardware prototyping possibly imposes several limita-
tions. In this section, we briefly highlight these limitations
and show the importance of simulator (like COTSon [2])
when it comes to assess and retrieve key metrics of a high-
performance computer, e.g., 1000 general purpose cores.

We report in Table 1 different approaches like using a
physical Cluster, FPGA, and Simulator to evaluate and do
research related to 1000-core computing system (Informa-
tion revised from the RAMP project [6]).

Given a cluster at a scale of, e.g., 1000 general purpose



Table 1: comparison different approaches for evaluating large
computing system. the grade points are scaled between 0 and 5
(grade of 5+ implies the superiority); GPA: Grade Point Average

Cluster FPGA Simulator

Scalability 5 5) 5

Cost 3 4(€0.1-0.2M) 5+(€0.01M)

Observability 3 5+ 5+

Reproducibility 2 5+ 5+

Reconfigurability 3 5+ 5+

Credibility 5+ 3.5 to 4.5 3

Development time 4 3 5+

Performance (clock) 5(3GHz) 1(GHz) 3

Modifiable 0 4 5

GPA 3.38 3.2 to 3.7 4.8

cores, the best possible solution to connect the nodes (each
node may consist of several cores) could be through Infini-
Band interconnect. The main disadvantage of a physical
cluster is its high cost and its inflexibility towards modifica-
tion of architecture as well as poor extensibility in order to
reconfigure the Instruction Set Architecture (ISA).

For FPGA, the hardware and software must be configured
and set up, which invokes considerable time and also effort.

The simulators might not show satisfying credibility, but
as they evolve, their credibility also improves. The main
problem of simulators is their less performance in compari-
son with a physical cluster. However, we consider the sim-
ulators very useful for approaching a reasonable level of
accuracy, scalability and simulation speed. Importantly,
COTSon [2] offers a flexible simulation environment which
made possible to design our DSE, and add new instruc-
tions [19, 25, 26] in order to evaluate a multi-core architec-
ture, with a dataflow execution model like DF-Threads.

We use COTSon to offer a flexible DSE toolset that easily
can adopt new hardware/software platforms, and support
scalability for a multi-node architecture. For instance, in
order to address the challenges of a 1k-core architecture, we
should be able to have a full-system simulation including
Operating System (OS), application benchmarks, a memory
hierarchy and all peripherals as well.

3. SIMULATION FRAMEWORK
Our proposed framework allows us to modify system pa-

rameters such as the number of cores and number of sim-
ulated instances (nodes), which are running in parallel on
completely independent hosts. This framework is also able
to run Shared Memory application like OpenMP as well.

The proposed simulation framework relies on HP-Labs
COTSon simulation environment and on a set of customized
tools that are intended to easily setup the experimental en-
vironment, run experiments, extract and analyze the results.

3.1 The COTSon simulator
COTSon simulator [2] is based on the so-called ”functional-

directed” approach, where the functional execution is decou-
pled from the timing feedback. COTSon simulator uses the
AMD SimNow virtualizer tool, which is proposed by AMD
in order to test and develop their processors and platforms.
COTSon executes its functional model into the SimNow vir-
tual machine, running and testing the execution of the func-

tional model. A custom interface is provided, in order to
facilitate the exchange of the data between COTSon and
the internal state of SimNow. As can be seen in Figure 1,
COTSon architecture is made of three main components:

1) FUNCTIONAL MODELS: it contains the instances of
the SimNow virtualizer, which executes the functional
model based on a configurable x86-64 dynamically trans-
lating instruction-level platform simulator.
In fact, we were able to customize the x86-64 instruc-
tion set of SimNow in order to introduce new instruc-
tions for the implementation of the DF-Threads execu-
tion model [19].

2) TIMING MODELS: it implements simulation accelera-
tion techniques, such as dynamic sampling, the tracing,
profiling and statistics collection. Through the specifi-
cation of a timing model for a given component (i.e.,
L1 cache, networking), we can model different behaviors.
The timing models are decoupled from the functional ex-
ecution of SimNow, allowing us the flexibility to model
different types of architectural feature.

3) SCRIPTING GLUE: the final part is related to the scripts
used to boot/resume/stop each virtual machine, the setup
of the parallel simulation instances of SimNow and the
time synchronization among all the virtual machines.
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Figure 1: The COTSon simulation framework architecture.

3.2 Design Space Exploration Tools

3.2.1 The tool set
In order to guarantee a proper scientific methodology for

experimentation, we developed the Design Space and Ex-
ploration Tools (DSE Tools) through which is possible to
easily set up the COTSon simulation environment, extract
and analyze the results of the experiments.
The normal toolflow is to follow the next eight steps.

i) GENIMAGE: the SimNow virtual machine needs a hard-
drive image, which contains the Operative System to
run. The GENIMAGE tool has the goal to create a cus-
tomized version of a Linux distribution by other tools
like VMBuilder and Debootstrap [5].



ii) ADD-IMAGE: this tool is preparatory to the GENIM-
AGE tool and it serves to load a given hard-drive image
and the related virtual machine snapshot.

iii) BOOTSTRAP: it is a preparatory tool to prepare a
user-based COTSon installation. This tool aims at solv-
ing the dependencies needed by the toolset in the host
machine, avoiding the manual installation of them. It
requires root permission once per machine. Moreover,
the tool tunes some kernel parameters such as the num-
ber of host memory pages needed by SimNow.

iv) CONFIGURE: it enables multiple users on the host ma-
chine to run a configuration of their own simulation
setup without the need of system administrator inter-
vention. In fact, the tool runs completely in user-space,
without the need of root permissions.

MYINSTALL
Hard-Drive

Image

INSTALLATION 
DIRECTORY

PACKAGES

e.g.
~/COTSON

EXTERNAL
PACKAGES

(SIMNOW, …)

AUTOMATED 
REGRESSION 

TESTS

OK/FAIL 
REPORT

myinstall.sh

Figure 2: TOOLFLOW for the MYINSTALL tool. MYIN-
STALL prepares the whole environment for simulation-based De-
sign Space Exploration with a single command. The Configura-
tion File specifies which additional tool or tool-options should be
used (e.g., non-public tools, or tools under NDA).

v) MYINSTALL: the purpose of this tool is to facilitate
the installation process of the simulator and the hard-
disk image which contains the pre-selected Operative
System that will runs into the SimNow machine (see
Figure 2). Moreover, MYINSTALL allows the choice of
the simulation software version, in order to enable more
versions of the simulator to co-exist for regression test.
Finally, the tool performs several regression tests at the
end of the installation phase, in order to verify the soft-
ware is correctly patched, compiled and installed. The
entire process is completely automatic and it can be eas-
ily repeated on multiple and parallel simulation hosts.

MYDSE
EXPERIMENT

INFOFILE

SIMULATION.1

TIMER.LOG

SIMULATION.1
OUT

SIMULATION.NSIM

TIMER.LOG

SIMULATION.NSIM
OUT

RAW METRICS RESULTS

Execution Loop check

Figure 3: TOOLFLOW for the MYDSE tool. The experiment
INFOFILE defines the simulation points and output files gener-
ated during each simulation are organized in order to facilitate
their accessing and parsing by the other tools.

vi) MYDSE: we found a substantial need to implement a
specific tool, which is able to easily catch possible fail-
ures or errors and, mostly, the automatic management
of experiments in case of a large number of design points
to be explored. As depicted in Figure 3, MYDSE relies
on a small configuration file, named ”INFOFILE”, which
is described in more details in the subsection 3.2.2.
Also, the tool is able to spread the simulation among
multiple hosts and,if necessary, it can use the same bi-
nary with different GLIBC library version across the
hosts. This allows us to use different operating sys-
tems, with a different version of the GLIBC library, in
different guests. During the experiment, MYDSE con-
trols the simulation loop, collecting in an ordered way
the several files from each simulation point. Statistics
based on user formulas are printed out at the end of
each simulation, in order to provide an overall evalua-
tion of the results. In case of failures, the tool kills the
failed simulation and the related processes after a cer-
tain time, trying the re-execution of the failed simula-
tion automatically. The timeout is derived by a simula-
tion estimation model (i.e., proportional to the number
of nodes and cores of the system).

vii) GTCOLLECT: once a campaign of experiments has
been concluded, we need to collect, analyze and plot
results in a simple way. In this perspective, we can
extract data from experiments with the GTCOLLECT
tool ( GT stand for Graphic Table Collect), which prints
out the collected data, based on the ”INFOFILE” infor-
mation and a ”LAYOUT” text files where the user can
specify the relevant output metrics to select. Further-
more, some additional calculations are performed on the
data, such as the Coefficient of Variation, in order to an-
alyze the correctness of the results.
With the GTCOLLECT tool, we can perform a com-
plete analysis of the raw data produced by the MYDSE.

viii) GTGRAPH: once the results are collected in the GT-
COLLECT format, the GTGRAPH tool can produce a
graphical view of the data, like Figure 7,8,9.

Additionally, COTSon permits a connection with McPAT
[2] to analyze the power consumption and the temperature
of an experiment.

explabel = “DF-Thread-Exp-v05”
MYLIBC = “2.27”
MYHD = “xenial09”

listmodel = “DF-Thread”
listappi[DF-Thread] = “mmx”
listsize[mmx] = “256+8+i 512+8+i 1024+8+i”

listcores = “12 4 8”
listnodes = “1 2 4 8”
listl2c = “256kB+64+2+WB+true+5+bus 512kB+64+2+WB+true+5+bus”
listtiming =  “simple+3M”

Number of Cores

Number of Nodes

Benchmark

Input Size

Image type Execution Model

Figure 4: INFOFILE example, which describes a Design Space
Exploration experiment.

3.2.2 Experiment Description
In this section, we want to introduce the experiment de-

scription file, named ”INFOFILE”, which makes the DSE
easy to manage a clear identification of the Design Space.
As depicted in Figure 4, we can describe the experiment



through a simple file that uses ”Bash syntax”: <variable>
= ”<string>”. Each DSE variable is defined with the prefix
”list”, while ”<string>” represents a set of value where ele-
ments can be separated with the character ”+”( i.e. 256+8+i
represent matrix size = 256, block size = 8 and matrix el-
ement type = integer). Moreover, we can define multiple
configurations of the architecture, in order to find the best
organization for a given application.

As we can see in Figure 5, each architecture configuration
is composed of high-level blocks and we can specify the orga-
nization using the bash syntax of the INFOFILE. The names
identify a block and the ”main” block is the root of the con-
figuration. The ”-” character specifies the link between two
blocks and the ”+” character separates the different links.
The ”.” character separates a first part which represents a
single instance of the implicitly defined architectural blocks
and a second part which represents multiple instances of the
implicitly defined architectural blocks. For example, in the
”listarch” variable of Figure 5 the part .ic-cpu+busT-t2+l2-
ic+l2-dc+t2-it+t2-dt will be instantiated C times (where C
is the number of Cores). Also, there is the possibility to
insert a tracing module between two blocks of the archi-
tecture, snooping the data and the information exchanged
among the blocks (”trace” block in Figure 5).

listarch=“main-mem+mem-trace+trace-l3+l3-bus+l3-
busT.ic-cpu+bus-l2+busT-t2+l2-ic+l2-dc+t2-it+t2-dt”

mem

l3

bus busT

l2 t2

ic dc it dt

cpu

trace

Dot statement (“.”) means multiple instances of the block (1…N)

becomes…

Figure 5: Architecture specification using the INFOFILE syntax,
which it is used by the MYDSE tool to configure the COTSon
simulation framework.

3.2.3 Customizable devices
The SimNow tool allows us to personalize the device ar-

chitecture of the virtual machine that we want to run, by
selecting a device from a list and placing it into the device
tree. Moreover, the device list could be extended in order
to introduce new customizable devices. As depicted in Fig-
ure 6, we were able to introduce a new PCI device, named
XNIC, in order to emulate the behavior of a hardware accel-
erator device (e.g. FPGA) and at the bottom we show the
kernel boot of such device.

4. EXAMPLE OF EVALUATIONS
In this section, we want to show some experiments that we

made on the COTSon simulator during the AXIOM and the
TERAFLUX European projects. The evaluations that we

NEW DEVICE

Figure 6: Architecture configuration of a SimNow virtual ma-
chine with the additional custom PCI device named XNIC. In
the bottom part, the new device is loaded into SimNow.

show in this section are based on the DF-Threads execution
model, focusing on execution time, OS impact and cache
usage (we don’t show results about temperature and power
consumption because it is out of the scope of this paper).
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Figure 7: Mutli-node, multi-core simulation up to 1024 cores
using Fibonacci, with input set to 40, and Matrix Multiply with
matrix size 512x512 based on DF-Threads execution model.

TEST CASE 1: as can be seen in Figure 7, we tested the
DF-Threads execution model through two well-known
benchmarks like Fibonacci (input n=40) and Matrix
Multiply (with a matrix size of 512). We are able to
simulate different nodes/cores configuration, from 1 to
1024 cores. Each node is configured to have from 1 to
32 cores and the node range is from 1 to 32.

TEST CASE 2: thanks to our DSE tools, we were able
to study the scaling factor while varying the input
size and the number of nodes, demonstrating that the
DF-Threads execution model has good scaling in ev-
ery tested Operating System. We tested the perfor-
mance of different OS distribution with a different size
of the Matrix Multiplication benchmark. As depicted
in Figure 8, the performance vary as the OS distribu-
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tion is changed and the trusty-axmv3 seems to be the
best among the tested ones in most cases. According
to [11], the Kernel activity has a huge impact on the
performance of the different operating system, varying
from 10% to 50%.
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size of the Matrix Multiply benchmark (matrix size = 256,512,and
1024).

TEST CASE 3: in this test we want to exploit the output
traces of the simulator in order to analyze different
aspects of the experiments. As we can see in Figure 9,
we study the L2 cache miss rate behavior among the
different OS distribution. We choose the input size
at 512x512 in order to have enough parallelism and we
vary the L2 cache size from 32 to 1024 KiB. The results
show that the L2 cache size has a strong influence in
the performance and therefore it may play a crucial
role in the system. For example, we discovered that
one of the optimization points of the execution model
implementation should be the L2 cache usage.

VALIDATION TEST: Finally, we validated our results
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Figure 10: Preliminary comparison of the execution time be-
tween the simulator and the AXIOM-Board. We used the Matrix
Multiply benchmark three different size: 216,432 and 864.

obtained through the utilization of the simulator, com-
paring the execution time (sequential execution) of
the Matrix Multiplication Benchmark both in simula-
tor and on a real board FPGA based (AXIOM-Board
[9, 15, 17, 30]). As can be seen in Figure 10, the re-
sults of the simulator and the board are very close,
confirming our performance predictions, despite some
architectural differences.

5. RELATED WORK
Several types of research have been recently carried out

and focused on Design Space Exploration (DSE) and simu-
lators like MULTICUBE [28], which proposed a multi-level
simulation approach using an approximate analytic meta-
model for MP-SoC architectures based on Artificial Neural
Networks. An iterative multi-objective optimization tech-
nique for MP-SoC is proposed in [20], which is able to model
the correlation of the multi-processor configurations with ap-
propriate analytical functions. In order to accurately sim-
ulate more complex processor designs, conventionally, ar-
chitectural simulators like Trace-Factory [16] and GEMS
[21] have been adopted. GEMS provides a very detailed
and accurate simulation by using a timing first approach to
model timing. In our case, we relay on COTSon, which uses
functional directed approach allowing simulation of several
thousands full system cores. GRAPHITE [22] is a multi-
core simulator designed to support more than 1000 cores at
higher-level of abstraction using distribution workload tech-
niques. These simulators lack efficient parallelization capa-
bilities due to fine-grained synchronization difficulties, which
limit the speedup. To mitigate these limitations, the user
has to trade speed with accuracy [22,23].

Sniper [4] is a parallel and scalable multi-core simulator
which compromises between accurate high-abstraction an-
alytical models and fast parallel simulation, and covers a
larger portion of the hardware design space. Even though it
covers operating system runtime simulations, they simulate
only up to 16-cores, while in our case we successfully are
able to simulate a 1000 general purpose multi-core architec-
ture [10]. However, some of these approaches miss porta-
bility and require considerable time to be ported to other
frameworks.
In [25] authors propose a full stack simulation system tar-
geting heterogeneous kilo-core architectures which includes
a customized extended version of x86/64 ISA [19,26] to sup-



port DataFlow-Threads (DF-Threads) execution model [14].
In [13,27] COTSon [2] simulator has been leveraged in order
to provide Distributed Scheduler to support many-node ar-
chitectures, and significantly improve scalability and power
estimation.

6. CONCLUSION
We have presented a set of tools for the Design Space Ex-

ploration, based on the COTSon simulator framework, with
the aim of supporting large set of experiments of a multi-
node multi-core platform with full OS execution (e.g., 1000
general purpose processors and real OS activity). Thanks to
our tools, we setup the simulation environment in less than
ten minutes, including several regression tests, saving hours
in comparison with manual installation. We can run sev-
eral experiments by using a simple configuration file, handle
possible failures or errors during the simulations. Finally,
results are automatically collected and presented in the de-
sired graphical view.
We showed several test cases and a validation test against a
FPGA platform. The results permitted us to derive infor-
mation early in the design process.
The DSE tools that we presented in this paper were mas-
sively used during two European projects (TERAFLUX and
AXIOM), facilitating the exploration of a large design space
and the test of a new execution model (DF-Threads).
In the future, we want to exploit machine learning tech-
niques to better select design points and in order to improve
the statistical characterization of the collected data.
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