JCacheSim: simulatore visuale di gerarchia di memoria con
interprete per programmi MIPS

Paolo Bennati, Roberto Giorgi
Dipartimento di Ingegneria dell’'Informazione,
Universita degli Studi di Siena

<cognome>@dii.unisi.it

Sommario

La gerarchia di memoria ricopre un ruolo essenziale nella progettazione
dei moderni calcolatori ma e’ anche uno degli aspetti piu’ difficiimente
presentabili da un punto di vista didattico. Sono particolarmente utili
strumenti di visualizzazione grafica. JCacheSim e’ un simulatore in grado
di riprodurre il comportamento reale della cache. E' stato sviluppato
sottoforma di Java Applet in modo da poter essere disponibile su qualsiasi
piattaforma; tramite un meccanismo di logging, JCacheSim consente la
raccolta da parte del docente di informazioni sull'attivita’ svolta dagli
studenti. JCacheSim e’ il framework ideale per lo studio della cache
durante i Corsi di Calcolatori Elettronici.

1. Introduzione

Nei moderni calcolatori, la gerarchia di memoria rappresenta uno degli aspetti
didatticamente piu’ ostili da presentare perche’ i meccanismi che ne regolano Il
funzionamento sono difficilmente illustrabili se non tramite la visualizzazione di
esempi o0 “animazioni” [Branovic, 2002] [Prete, 1994] .

D’altra parte la gerarchia di memoria ha un ruolo ormai essenziale nel
funzionamento di moderni calcolatori in quanto il divario di velocita’
processore/memoria e’ sempre piu’ crescente. Poiche’ la performance globale
dell'intero sistema e’ determinata dall’elemento piu’ lento, tale gap rappresenta il
cosiddetto “collo di bottiglia di Von Neumann” [Hennessy, 2004].

Assume particolare importanza la corretta progettazione dei livelli della
gerarchia di memoria piu’ alti, cioe’ piu’ vicini al processore, ed in particolare le
memorie cache [Smith, 1982]. Le memorie cache altro non sono che dei buffer molto
veloci che contengono copie di quelle parti di memoria piu’ frequentemente e/o

105

recentemente utilizzata. L’esecuzione dell'applicazione trae vantaggio dalle memorie
cache grazie al minor tempo di accesso.

La comprensione dei principi di funzionamento delle memorie cache
rappresenta quindi un aspetto didatticamente fondamentale nei corsi di Architettura
dei Calcolatori o — tradizionalmente — Calcolatori Elettronici. 1l motivo per cui la
memoria cache risulta efficace nel ridurre il tempo di accesso medio alle memoria
risiede nello studio delle caratteristiche di localita’ dell'applicazione [Giorgi, 1997].

Dato un certo programma, non e’ assolutamente semplice per lo studente
realizzare quelli che sono le potenzialita’ di sfruttamento della memoria cache, capire
guale possa essere un corretto dimensionamento della stessa, quali debbano essere
le politiche locali di gestione (es. politica di scrittura, politica di rimpiazzamento).

Sono disponibili strumenti che mostrano il numero di hit e miss totali (es
DINERO [Elder, Dinero 1V], o altri piu’ sofisticati quali Simplescalar [Burger, 1997],
ma tali strumenti si limitano a mostrare le statistiche di hit e miss e a fornire i risultati
essenziali da utilizzare nella ricerca, senza consentire un’indagine dettagliata a fini
didattici di quale sia la distribuzione degli accessi in cache e cosa avvenga in una
particolare cella di memoria o blocco di memoria in cache. Ci si avvale in questo
caso di programmi di simulazione.

Un simulatore di una qualsiasi architettura atro non e’ che uno strumento in
grado di riprodurre esattamente il comportamento di uno specifico sistema e
conseguentemente di modellare il suo reale funzionamento (Fig. 1).

System

outputs
System SIMULATOR
inputs
System

metrics
Fig. 1. Schema logico generale di un simulatore.

Con un simulatore si possono estrarre stime sulla performance del sistema ed

e’ possibile effettuare una completa esplorazione dello spazio di progetto e risulta

piu’ semplice la validazione del software prima della sua introduzione nel mercato.

JCacheSim vuole essere un contributo in questo specifico campo didattico
offrendo uno strumento visuale che puo’ essere utile a progettisti e ricercatori
nell'acquisizione delle informazioni sull’esecuzione di un programma in un dato

sistema. Puo’ essere utile nel processo di scelta della migliore configurazione di

memoria cache (cache size, block size, block placing policy, replacing policy, ecc...)

Lo studio delle memorie cache rappresenta elemento fondamentale nel
percorso formativo di qualsiasi studente. Tuttavia non e’ affatto semplice
comprenderne I'esatto funzionamento, poiche’ e’ necessaria la conoscenza non solo

di ogni singolo componente del sistema ma anche il meccanismo con cui essi

interagiscono fra di loro. Per questo motivo, JCacheSim risulta essere un framework

ideale per lo studio teorico durante i Corsi di Architettura dei Computer.
Sono sempre in maggior numero i corsi che in qualche modo offrono strumenti

di studio on-line [International data Corporation] [Branovic, 2001]. In quest’ottica

JCacheSim e’ scritto in forma di Java Applet per due motivi:

i) essere disponibile su qualsiasi piattaforma con linguaggio Java (basta un semplice
browser per internet per utilizzarlo, indipendentemente, ad es. dal sistema
operativo);

i) poter raccogliere statistiche sulle sperimentazioni svolte dallo studente. Riguardo
a quest’ultimo aspetto, lo studente deve identificarsi e verranno raccolti dati
sull'uso effettivo dello strumento di simulazione.

106

2. Caratteristiche di JCacheSim

JCacheSim e’ uno strumento in grado di simulare il comportamento reale del
sottosistema di memoria cache in modalita’ grafica. Consente, semplicemente
modificando i parametri nell’interfaccia grafica, di impostare specifiche configurazioni
di sistema. Inoltre, lo studente puo’ inserire un proprio programma Scritto in
Assembly MIPS, o utilizzare alcuni degli esempi predisposti. Un semplice
assemblatore interno si occupa di effettuare il controllo sintattico e la traduzione in
linguaggio macchina.

JCacheSim e’ stato sviluppato in linguaggio Java e puo’ essere installato su un
qualsiasi WebServer opportunamente configurato. Questo ne garantisce un’ampia
accessibilita’ da parte degli utilizzatori oltre ad un ovvio semplice interfacciamento
con essi.

Una volta compilato il codice, il simulatore MIPS puo’ eseguire il programma in
tre diverse modalita’:
¢ Single Operation: viene eseguita una singola operazione MIPS;

e Single Step: ogni singola operazione e’ scomposta nelle sue parti di fetch ed
execute e l'utente puo’ seguire step-by-step il comportamento della cache;

e Program: lintero programma compilato viene sequenzialmente eseguito
automaticamente.

Durante tutta I'esecuzione del programma il contenuto di ogni singola cella di
memoria e’ visibile, rendendo semplice la comprensione dell'associazione fra
indirizzi di memoria e indirizzi in cache. Alla fine i risultati della simulazione sono
mostrati sottoforma di valori numerici e di grafici con i quali e’ possibile esplorare ad
esempio la localita’ degli accessi di un determinato programma inserito dallo
studente.

3. Esecuzione di JCacheSim

Durante I'utilizzo dello strumento, I'utente e’ guidato tramite una interfaccia intuitiva.
Come primo passo e’ necessario impostare la configurazione del sistema. Si tratta di
impostare la lunghezza di parola del sistema (32 o 64 bit) la configurazione della
cache e la dimensione della memoria principale (Fig. 2).

107

PROCESSOR

L

Cache Parameters ’—x_—|
| Cachesize | |26 =
‘_;Iacement_i_i |Direc1 Mapped be?
|Replacement Palicy| ® LRy O Rranoom (O FIFO
| WritePolicy | e S
W'rEe_ -M_I;:'_Dl-lg-| W\te Allacate -

¢

Memory size

-|

lse o~ ‘

Fig. 2. Setup del sistema

La seconda fase consiste nella compilazione di un codice in formato assembler
MIPS. E’ possibile caricare dei codici di esempio oppure utilizzare una finestra di
editing. L'interfaccia riporta sulla parte sinistra per comodita’ I'elenco delle istruzioni
modellate nel compilatore (Tabella 1) con la sintassi da utilizzare.

Category Instruction
Arithmetic add, addi, addu, sub, subu, nop, mult, mthi, mtlo
Logic and, nor, or, sll, srl, sllv, srlv, xor

Data transfer

Ib, Iw, lui, sh, sw

Unconditional branch

beq, bne, slt, sltu

Conditional branch

i, jal, jr

Interrupt management

nop

Floating point instruction

add.s, bclf, bclt, c.eq.s, c.lt.s, c.le.s, div.s, lwcl,

mfcl, mtcl, mul.s, sub.s, swcl
Tabella 1. Set di istruzioni supportato dal compilatore.

Con l'apposito pulsante si avvia la compilazione; eventuali errori sono
opportunamente segnalati nell’apposito spazio dell'interfaccia (Fig. 3).

Lo step successivo e’ quello della simulazione vera e propria. L'utente puo’
decidere come eseguire il codice precedentemente compilato secondo le tre
modalita’ previste. Ogni azione dell'esecuzione €’ Vvisualizzata e animata
graficamente. Sulla parte sinistra e’ riportato il contenuto della memoria cache e sulla
destra invece quello della memoria principale. In alto, ogni istruzione e’ descritta in
dettaglio. Sono inoltre presenti due sezioni riassuntive con il codice da eseguire ed il
contenuto dei registri. Nel caso di esecuzione Single Step o Single Operation ogni
istruzione e’ anche descritta da un’apposita finestra di messaggio (Fig. 4).

108

[T/l Compiler
Instruction Set

ADD red red reg
ADDU red red reg
ADDI red red imm
ADDS red red reg
AN red red reg
BEG red reg label
BEME red reg label
BCLT label

BCLF label
CEQS reg req
CLTS red reg
CLES red reg

D .5 red red reg
J label

JR reg

JaL label

LB red val(red)
L red val(red)
L e imm
LisiCL reg,val(req) —
AT P =4

A=zsembly Code Editor |Cuhe Sum '|

System Settings
hemory Size=2192
Cache Size=256
Block Size=1 words
Direct happad
Wirite Back-Wirte Alocate

This program shows the use of loop. it computes

o183+ 223+ 303+ 43+ L+ B

#where H is a value loaded in $6 in the first instruction.
#Take care of overflow and catch it by examining contents
#of Hl register

addi $6,$0,10 # $6=the limit H
addi $8,$0,0 #$8=the sum
addi $4,$0,0 #%$4=n, runs from1to H
addi $3,$0,1 #$3 constant 1
start:add $4,$4,$3 #increment n by 1
mult $4,%4 #lo=$4 2
mtlo $5 #$5=[lo]=$4~2
mult $5,$4 #lo=$4*3
mtlo §5 #$5= $443
add $8,$8,$5 #add n*3 to sum
bne $4,$6,start; # go back if n!=H
nop

Compile Time Errors {if any}

F1Y. O. 11 LUITHIPIIAWUIE Ul yeauliestnnn

A simulazione terminata, e’ possibile visualizzare le statistiche attraverso una
ulteriore schermata. Tale schermata e’ suddivisa in tre sottosezioni:
e nella prima schermata sono presentati i parametri generali della CPU, del bus,

della memoria principale e della cache: tipo e numero di istruzioni eseguite,

utilizzo del bus, tipologia di accessi alla memoria oltre a miss-rate e hit-rate;

e nel secondo pannello e presentato un grafico con il numero di read/write in
rapporto al numero totali degli accessi; inoltre e’ presente anche una tabella che
mostra le statistiche di tutte le operazioni di accesso alla memoria;

e nella terza finestra sono presenti alcuni grafici che riportano dettagliatamente le
operazioni eseguite in ogni blocco (Fig. 5).

109

. . . ~CPU Interface Memory Interface
TextSegment oc CPU Status
M Operation T
00 addi §6,$0,10 R -’— EESNEETHON SYHE Memory area
04 addi 48,40,0 = | ‘

i FETCH TEXT SEGMENT
0x3 addi $4,$0,0 IR ‘ ‘ ‘
0xC addi $3,40,1 =

io el ba e | 020060004, | E

Symhbol Table - — -
Lakel Address -Cache Latche:
start ox10 Tag:24 Index:6 Evte:2

| 000000000000000000000000 | | 0ooooa uli]
@ Main Memory
Registers Cache
$0=0 $ab=0 -
fvl=0 fvl=0
- = block 1 T 2
pal=0 $al=0 ; & Detailed Operations on Memory sub-systems
taz=0 $a3i=0 block 2 ” -
$0=0 $t1=0 Loading 1 wards
. : blocks from Main Memaory starting From address 0

ttz=0 $t3=0
=0 == n block 4 ko cache block Address:0
ftd = $t5 = block 5 Settag 0
fre=0 $7=10 DL Set Madified bit 0
fs0=0 $s1=0 block & Set walid bit 1
fer =11 fei=10 black 7

System Settings block 8
Memory Size=2192 Hlack 3 =
Cache Size=256
Block Size=1 words
Direct happed
irite Back-iite Alocate
Uszer Program

| Single Operation ‘ | Program | | Step I

F1g. 4. L"Intertaccla della sezione di simulazione.

3. JCacheSim come strumento didattico

JCacheSim costituisce uno strumento di supporto allo studio dei sistemi di
elaborazione durante i Corsi di Architettura dei Calcolatori. E’ un tool semplice ed
intuitivo che guida passo-passo lo studente nella configurazione del sistema, nella
compilazione del codice e nella simulazione dello stesso. Le statistiche sono
facilmente visualizzabili grazie ai numerosi grafici disponibili al termine della
simulazione.

Overall System Statistics | Detalled Operations * Single Block Statistics \

Statistics - S

Total Accesses Chart fo

. I LN__HH

0 1.2 3 4 5§ 6 T 8 8

T T T
10 11 12 13 14 15 16 117 18 19 20 21 232 23 24 25 26 27 28 20 30 I

| »

Choose chart type Statistics of single block
Total Accesses +

Fig. 5. Statistiche del singolo blocco.

JCacheSim risulta essere un valido aiuto anche ai docenti, che solitamente
incontrano notevoli difficolta nello spiegare argomenti come la gerarchia di memoria,
110

il linguaggio assembler e, piu’ in generale, I'interazione tra tutti i sottosistemi del
calcolatore. Con JCacheSim i docenti possono organizzare dimostrazioni in
laboratorio per illustrare quanto spiegato durante le lezioni teoriche.

Poihce’ JCacheSim funziona tramite Web ed implementa al suo interno un
meccanismo di identificazione dell'utente (Fig. 6) e raccolta delle statistiche di
utilizzo, il docente potra seguire l'utilizzo del tool fatto da ogni singolo studente, il
tempo speso da ognuno di essi nelle varie parti del simulatore.

®

Username r | oK

Password | | Help

| Start Simulation

Fig. 6. Meccanismo di Login.

4. Conclusioni e sviluppi futuri

In questo articolo e’ stato presentato JCacheSim, un simulatore di visuale di sistemi
MIPS. Tale simulatore €’ in grado di assemblare un programma scritto in linguaggio
assembler MIPS e di simularne I'esecuzione. Al termine vengono fornite dettagliate
statistiche sull’applicazione eseguite e mostrate in dettaglio tutte le operazioni che si
svolgono nella gerarchia di memoria.

Il simulatore e’ stato sviluppato in linguaggio JAVA e generato come applet
java: risulta per questo essere facilmente utilizzabile via web.

JCacheSim puo’ risultare particolarmente utile ai docenti, studenti universitari,
poiche’ consente di specificare e variare una grande varieta di parametri del sistema
e di visualizzare il comportamento interno di componenti architetturali del calcolatore.

Il simulatore e’ gia’ disponibile alla pagina web:

http://www.dii.unisi.it/~giorgi/jcachesim.

5. Riferimenti bibliografici

Giorgi R., Prete, C. A., Prina G.: Cache memory design for embedded systems
based on program locality analysis, Proceedings of the 1997 International
Conference on Microelectronics Systems Education (MSE '97), pp. 0016

Hennessy J. L., Patterson D. A: Computer Organization and Design, 3rd edition,
Morgan Kaufman/Elsevier, 2004

Smith A. J.: Cache memories. ACM Computing Surveys, 14(3):473-530, 1982.

Elder, J., M.D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://www.cs.wisc.edu/~markhill/DinerolV.

111

Burger D., Austin T. M.: The SimpleScalar tool set, version 2.0. Technical Report
1342, University of Wisconsin--Madison Computer Sciences Department, 1997
Branovic I. and Giorgi R., Prete C.A.: Web-based training on Computer Architecture:
The case for JCachesim. IEEE Workshop on Computer Architecture Education
(WCAE-02), Anchorage, AK, USA, pp. 56-60,2002.

International Data Corporation: Distance Learning in Higher Education: Market
Forecast and Analysis, 1999-2004.

Prete, A.: Cachesim: A graphical software environment to support the teaching of
computer system with cache memories. Proceedings of 7-th SEI Conference on
Software Engineering Education, Springer-Verlag, January 1994.

Branovic, |., Milutinovic, V.. Tutorial on Advances in Internet-based Education,
(http://galeb.etf.bg.ac.yu/~vm/tutorials), School of Electrical Engineering, University of
Belgrade, Serbia, Yugoslavia, 2001.

112

