
A Performance Evaluation of ARM ISA Extension for Elliptic Curve 
Cryptography over Binary Finite Fields 

 
 

Sandro Bartolini, Irina Branovic, Roberto Giorgi, Enrico Martinelli  
Department of Information Engineering, University of Siena, Italy  

{bartolini,branovic,giorgi,enrico}@dii.unisi.it 
 

 
Abstract 

 

In this paper, we present an evaluation of possible 
ARM instruction set extension for Elliptic Curve 
Cryptography (ECC) over binary finite fields GF(2m). 
The use of elliptic curve cryptography is becoming 
common in embedded domain, where its reduced key 
size at a security level equivalent to standard public-
key methods (such as RSA) allows for power 
consumption savings and more efficient operation. 
ARM processor was selected because it is widely used 
for embedded system applications. We developed an 
ECC benchmark set with three widely used public-key 
algorithms: Diffie-Hellman for key exchange, digital 
signature algorithm, as well as El-Gamal method for 
encryption/decryption. We analyzed the major 
bottlenecks at function level and evaluated the 
performance improvement, when we introduce some 
simple architectural support in the ARM ISA. Results 
of our experiments show that the use of a word-level 
multiplication instruction over binary field allows for 
an average 33% reduction of the total number of 
dynamically executed instructions, while execution 
time improves by the same amount when projective 
coordinates are used.  
 
1. Introduction 
 

Cryptographic processing is used in many areas, for 
instance electronic commerce, securing e-mail and 
wireless communications. Current uses of public-key 
cryptography include encryption schemes (like RSA or 
El-Gamal), digital signature schemes (like Digital 
Signature Algorithm, DSA), and key agreement 
methods (like Diffie-Hellman). A common feature of 
“traditional” public-key schemes is the need to operate 
on relatively long integer data (1024-4096 bits) to 
achieve enough security. While performing typical 
public-key operations such as modular multiplication 
or exponentiation on a 1024-bit data is not so critical 
on current desktop computers, the performance of 

public-key cryptography methods is still critical in 
embedded environments, especially for application in 
wireless, handheld internet devices and smart cards 
with small memory and strict CPU-latency constraints. 

Usual solution for improving public-key 
cryptography performance is the use of coprocessors 
that accelerate long integer arithmetic operations. Our 
proposal deviates from expensive solutions, such as 
co-processors, in order to find a trade-off that could 
provide performance improvement at little additional 
cost, by observing what are the mostly important 
operations, in a RISC-like fashion. 

Elliptic Curve Cryptography (ECC) is becoming 
more and more used as an alternative to "standard" 
public-key methods. Its major advantage is the fact 
that it uses shorter keys at security level equivalent to 
"standard" public-key algorithms, which translates 
into faster implementations, reduced energy and 
bandwidth consumption. These characteristics make 
ECC especially well suited for implementation in 
embedded systems. For example, security of RSA 
encryption with 1024-bit key is approximately at the 
same level as the use of 163-bit key in the case of ECC 
over GF(2m)  [13]. ECC is already incorporated into 
two important public-key cryptography standards, 
FIPS 186-2 [13] and IEEE-P1363 [7].  

Elliptic Curves (ECs) can be defined over any field, 
but for cryptographic purposes, elliptic curves over 
finite fields are most often used. The performance of 
ECC is determined by the efficiency of the arithmetic 
in the underlying finite field (Galois Field over prime 
field GF(p) or over binary field GF(2m)). 

Since it appears that arithmetic in GF(2m) can be 
implemented more efficiently in hardware and 
software than arithmetic in GF(p), elliptic curves over 
binary finite fields have seen wider use in commercial 
applications. However, embedded processors do not 
implement instructions for efficient arithmetic in 
binary finite fields GF(2m). For this reason, we studied 
possible instruction set extensions for improving ECC 
performance over GF(2m). 



We developed a benchmark set which implements 
elliptic curve versions of Diffie-Hellman key 
exchange, DSA, and El-Gamal encryption/decryption. 

We chose ARM processor for our case study, since 
it is widely used for embedded applications. For 
example, ARM processor core is being developed into 
90% of mobile phones and PDAs worldwide [2]. We 
examined possible instruction set extensions of ARM 
instruction set useful for ECC over binary finite fields 
based on the analysis of such typical ECC algorithms.  

The performance improvement was verified by 
using the SimpleScalar architectural simulator for 
ARM target. Specifically, our simulation with an 
added instruction for multiplication of two 32-bit 
polynomials reduces the total number of dynamically 
executed instructions in average by 33%, and their 
execution time decreases by the same amount. A 32-
bit word finite field polynomial multiplication can be 
implemented to have similar performance and 
complexity features as an integer multiplier [10]. 
Extending instruction set for this purpose therefore 
offers significant advantages with a limited increase of 
processor cost and die size.  

This paper is organized as follows. In Section 2 we 
describe ECC algorithms in more detail. Section 3 is 
devoted to experimental setup and methodology, with 
results of experiments and discussion of proposed ISA 
extension for ECC over binary fields presented in 
Section 4. We considered related work in Section 5, 
and gave concluding remarks in Section 6. 
 
2. Public-key ECC benchmarks 
 

We considered the ECC version of three most 
widely used algorithms in public-key cryptography: 
Diffie-Hellman for key exchange, digital signature 
algorithm, and ElGamal for encryption/decryption. 

Diffie-Hellman key exchange is used to establish a 
shared key between two parties over a public channel.  
Although it is the oldest proposal for eliminating the 
transfer of secret keys in cryptography, it is still 
generally considered to be one of the most secure and 
practical public-key schemes. The security of Diffie-
Hellman method relays on the difficulty of calculating 
discrete logarithms (given an element α in finite field  
GF(p) and another element y in the same field,  find 

an integer x  such that xy α=  mod p ). 

Digital signature of a document is a cryptographic 
method for ensuring the identity of the sender and the 
authenticity of the sent data. Digital signature of a 
document is information based on both the document 
and signer's private key. The National Institute of 
Standards and Technology (NIST) published the 

Digital Signature Algorithm (DSA) in the Digital 
Signature Standard [13]. This standard requires use of 
Secure Hash Algorithm (SHA), specified in the Secure 
Hash Standard [12]. The SHA algorithm takes a long 
message and produces its 160-bit digest; this method 
is known as hashing. The message digest is then 
digitally signed with the signer’s private key; 
signature can be verified using the sender's public key. 

ElGamal is a public-key encryption/decryption 
scheme based on discrete logarithm problem, e.g. 
finding modular inverses of exponentiations in finite 
fields, and as such can be efficiently implemented 
using elliptic curves. Although RSA cryptosystem [14] 
has practically become the standard for public-key 
encryption, it does not offer any particular advantage 
when used with elliptic curves [4].  

For a better understanding of the basic operations 
involved, we briefly recall ECC information related to 
our benchmarks. Since ECC over binary fields yields 
more efficient implementations [15], we focused on 
such fields. An elliptic curve over binary finite field is 
defined as the set of points ),( yx  that satisfy the 

Weierstrass equation (in affine coordinates): 
baxxxyy ++=+ 232 ,       ∈yxba ,,,  GF(2m) 

together with a special point called the "point at 
infinity". The security of ECC lies in the fact that 
given two points P and Q on the curve, it is hard to 
find k (usually a large integer), such that kPQ = . 

This problem, called the elliptic curve discrete 
logarithm problem, has similar difficulty as solving 
discrete logarithm in integer fields. 

The operation kP  is also known as scalar point 
multiplication. The ECC versions of the above 
algorithms essentially substitute exponentiation with 
ECC point multiplication. The latter operation is 
performed in terms of a number of basic EC 
operations that are point addition and point doubling. 
If ),( 11 yxP = and ),( 22 yxQ = are two distinct points 

on the elliptic curve, the sum ),( 33 yxQP =+ , which 

is also a point on the same curve, is defined by 
following equations (in affine coordinates): 










=+

≠
+
+

=

+++=
++++=

QPif
x

y
x

QPif
xx

yy

yxxxy
xxax

1

1
1

12

12

13313

21

2

3

)(

λ

λ
λλ

 

Various efficient methods for calculating kP  in 
software exist [6] or [4]. Point addition and doubling 
operations ultimately translate to a certain number of 
four basic finite field operations (additions, 



multiplications, squarings, and inversions), which 
define the overall efficiency of elliptic curve 
calculations. Namely, point addition (doubling) 
require the following GF(2m) operations: 

� two multiplications 
� one squaring 
� one inversion  
� nine (eight for doubling) additions 

Elliptic curve operations require use of multi-precision 
arithmetic over GF(2m), where m  is much larger than 
word size of the processor (32 bits for ARM). The 
representation used for elements of the underlying 
field can have significant impact on the efficiency of 
elliptic curve cryptosystem. For GF(2m), polynomial 
and normal basis [4] representations are typically 
used. In this study, we used polynomial 
representations, since it is well known that it yields 
more efficient software implementation [6]. In 
polynomial representation, every element of the binary 
finite field can be expressed as a binary polynomial of 
maximum degree 1−m . The polynomial can be seen 
as the vector of its coefficients, where each of the 
coefficients can be either 0 or 1. Such representation is 
very convenient for performing addition since it 
requires only simple bit-wise XOR. 

We will continue with description of four basic 
finite field operations, in case of polynomial 
representation. The product of two field elements can 
be obtained by first multiplying the two elements as 
polynomials, which gives as the result a polynomial of 
the degree less than or equal to )1(2 −m , and then 

calculating the rest of the division with the irreducible 
polynomial (reduction). A polynomial )(xf  is said to 

be irreducible if it cannot be factored in non-trivial 
polynomials over the same field. 

Some DSP, such as Texas Instruments TMS320-
C6400, implement the instruction for polynomial 
multiplication, followed by reduction with the 
irreducible polynomial. However, these instructions 
support maximum field size of GF(28) as they are used 
in applications like Reed-Solomon coding. 

Since there is no instruction for GF(2m) 
multiplication on current processors, this operation 
has to be done in software or by co-processors. As we 
are not interested in coprocessor implementations, we 
focused on software implementations analysis to find 
which operations could benefit from simple 
architectural support. 

The basic method for multiplication is the "shift-
and-add" algorithm. Some smarter approaches for 
finite filed multiplication are possible. We used the 
Karatsuba-Ofman algorithm [9], a recursive divide-
and-conquer approach for multiplying two multi-

precision operands. In practice, this procedure is used 
to recursively arrive to word-level (32-bit) polynomial 
multiplication, which is then performed by a variant of 
window-method [6] on 32-bit words.  

By choosing the irreducible polynomial )(xf  as a 

low weight polynomial, i.e. the one with the least 
possible number of non-zero coefficients, reduction 
modulo )(xf is a simple operation that is performed in 

linear time. For cases of practical interest, )(xf  is 

either trinomial or pentanomial. For the reduction of 
product modulo an irreducible polynomial we used the 
efficient procedure from [4]. 

Polynomial squaring is much faster than polynomial 
multiplication, since it can be obtained by inserting a 
zero bit between consecutive bits of the binary 
representation of field polynomial. The speed of 
squaring can be additionally improved if a pre-
computed look-up table is used, however it was not 
implemented in our benchmark. 

Inversion in finite field is the most time-consuming 
operation. The inversion operation can be avoided 
during finite field operations when Jacobean 
projective coordinates are used (although one 
inversion is necessary for point conversion), with the 
cost of additional multiplications. This approach was 
used in our benchmarks. To validate the effectiveness 
of projective coordinates, we compared the results 
against the case of affine coordinates. 

 

3. Experimental methodology 
 
The performance evaluation of our ECC benchmark 
set is done using a modified version of sim-profile and 
sim-outorder simulators of the SimpleScalar toolset 
[17] for the ARM target. The sim-outorder tool 
performs a detailed timing simulation of the modeled 
target. Simulation is execution driven, and accounts 
for speculative execution, branch prediction, cache 
misses, and other advanced features (see Table 1).  
 
Table 1: Simulated baseline architecture, modeled 

after Intel XScale. 
 

Fetch queue (instructions) 4 
Branch prediction 8K bimodal, 2K 4-way BTB 

Fetch & Decode width 1 
Issue width 1 (in order) 

ITLB 32 entry, fully associative 
DTLB 32 entry, fully associative 

Functional units 1 ALU, 1 int MUL/DIV 
Instruction L1 cache 32 KB, 32-way 

Data L1 cache 32 KB, 32-way 
L1 cache hit latency (cycles) 1 

L1 cache block size 32 bytes 
L2 cache none 

Memory latency (cycles) 24 
Memory bus width (bytes) 4 



The ARM target of the SimpleScalar set supports the 
ARM7 integer instruction set, which has been 
validated against a Rebel NetWinder Developer 
workstation [3] by the developers of the simulator. The 
processor the we simulated processor has a 
configuration that is modeled after Intel XScale 
architecture [8], adopted by major PDA manufacturers 
like Toshiba, Fujitsu and HP. Details of the ARM 
processor configuration are in Table 1. 

When simulating “ideal” memory, processor was 
configured to have non-existing cache and latency of 
main memory access of 1 cycle, which corresponds to 
cache hit latency. 

The sim-outorder tool was modified to add cycle 
level function profiling, e.g. to produce exact number 
of execution cycles for every procedure in the code, 
based on the output of gcc-objdump. This tool was also 
modified to support the execution of new instructions. 
Some unimplemented system calls for ARM target are 
also added, although they were not critical for the 
execution of the benchmark.  
We used gcc cross-compilers for ARM instruction 
set included with SimpleScalar package [17]. The gcc 
cross-assembler was also modified to recognize newly 
added instructions. All programs were compiled with -
O2 level of optimization.  
Since a common approach for implementing public-
key cryptography is to use available open-source 
libraries that offer all basic cryptographic functions, 
we followed such approach, as a realistic one. In 
particular, we used MIRACL C library [11]. This 
library consists of over 100 routines that cover all 
aspects of multi-precision arithmetic and finite field 
operations. The library file containing elliptic curve 
primitives was modified at assembly level to include 
new instructions. The benchmark set that we 
implemented makes use of the MIRACLE C library, 
which does not provide the cryptographic algorithms. 
The description of our benchmark suite is given in 
Table 2. 
The binary finite fields and elliptic curves used in tests 
were chosen according to NIST standard [13]. This 
standard recommends the use of certain curves with 
strong security properties to ease the interoperability 
between different implementations of security 
protocols. For binary polynomial fields, the curves 
were recommended for key sizes of 163, 233, 283, 
409, and 571 bits. Apart from the field size, parameter 
files in use with our benchmarks specify parameters 
for initializing the curve, setting the base point on a 
curve, and setting the irreducible polynomial 
(trinomial or pentanomial) for reduction of polynomial 
product. We conducted experiments for the first three 

fields only, which cover the security requests of 
nowadays and next future applications.  
The notation <benchmark_acronym>.b<key_length> 
was used for each benchmark, where b denotes the use 
of binary finite field, while key_length indicates the 
field size (e.g., ecdsign.b233 means that the digital 
signature generation over GF(2233) field is used). 
 

Table 2: Description of our ECC benchmark set. 
 

Benchmark 
acronym 

Benchmark 
name 

Description 

ecdh 
EC Diffie-

Hellman key 
exchange 

Generates a prime suitable for Diffie-
Hellman algorithm and calculates a 

shared key. 

ecdsign 
EC digital 
signature 

generation 

Calculates the message digest of a file 
using sha algorithm, signs the message 

using the private key and writes the 
signature into a file. 

ecdsver 
EC digital 
signature 
verification 

Calculates the message digest of a file 
using sha algorithm, then verifies the 

signature using public-key. 

ecelgenc 
EC El-Gamal 

encryption 
Encrypts a point on the curve using El-

Gamal algorithm. 

ecelgdec 
EC El-Gamal 

decryption 
Decrypts a point on a curve using El-

Gamal algorithm. 

 
 

4. Analysis of possible instruction set 
extensions for ECC 
 

The scope of our study was to explore possible 
extensions of ARM instruction set that are useful for 
efficient elliptic curve cryptography operations. We 
firstly analyzed the instruction mix of elliptic curve 
benchmarks (Figure 1). The instruction mix shows a 
very large percentage (approximately 40%) of integer 
instructions, as well as load and store operations 
(approximately 50%). We expected a similar 
distribution since finite field operations translate into 
a large number of logical operations (XOR, shift etc.), 
and result in a large number of register-memory 
transfers to operate on m-bit data (e.g. m ranges from 
163 to 283 and is much larger than 32 bit register 
width in ARM). 

 
Instruction mix

0%

20%

40%

60%

80%

100%

ecdh.b233

ecdsign.b233

ecdsver.b233

ecelgenc.b233

ecelgdec.b233

integer computation

conditional branch

unconditional branch

store

load

 
Figure 1: Instruction class distribution for elliptic 
curve cryptography benchmarks. The results for 

the key sizes of 163 and 283 bits are almost 
identical and thus are not reported. 

 



On the simulated ARM architecture, we analyzed 
which functions are mostly affecting the execution 
time, through an accurate, cycle level profiling. This 
analysis was carried out for all ECC benchmark suite 
that we considered (Figure 2). 

 
Mostly used procedures are:  
� karmul2 (recursive Karatsuba algorithm for 

GF(2m) polynomial multiplication), 
�  mr_bottom4 (the base case in recursive calls of 

karmul2 function), 
� mr_mul2 (word-level polynomial multiplication), 
� add2 (GF(2m) addition, e.g. XOR operation over 

m-bit polynomials), 
�  square2 and mr_sqr2 (GF(2m) and word-level 

squaring respectively), 
� reduce2 (GF(2m) reduction modulo irreducible 

polynomial), 
�  copy (GF(2m) polynomial assignment operation), 
� mr_lzero (sets to zero a given GF(2m) element), 
� hashing, shs_transform and shs_process (functions 

used for calculating message),  
� shiftbits, and numbits have obvious meaning. 
 
In particular, the mr_mul2 procedure, which 

multiplies two 32-bit binary finite field polynomials 
and produces a 64-bit product consumes 34% of the 
total execution time in average for all benchmarks, 
and reaches 54% for Diffie-Hellman benchmark 
(ecdh). mr_mul2 procedure is translated into about 
400 dynamic instructions (roughly 500 cycles), which 
correspond to about 12 instructions per bit to perform 
32-bit polynomial multiplication. 

The difference in mr_mul2 percentage between 
coding and decoding is due to the fact that encoding 
employs one scalar point multiplication more in 
respect to decoding. The latter shows higher influence 
by mr_mul2 than other benchmarks because it is made 
up exclusively of operations on elliptic curves, without 
any other significant elaboration: in particular, ecdh 
benchmark uses two scalar EC point multiplications to 
allow a communication party to form a shared key 
with the other party. 
The operation of El-Gamal algorithm is very similar 
to Diffie-Hellman one, in fact it uses the party public 
key to encode the message and the private key to 
decode it. 

The other benchmarks use ECC to perform digital 
signature operations (signature and verify), and thus 
comprise a non-negligible activity for non-EC 
operations. In digital signature algorithm, more than 
60% of the total execution time is spent in: 
a) 18% in reading message file (file_reading) and  

b) calculating its hash (about 45%), i.e. 160-bit 
digest (functions shs_transform, shs_process, 
and hashing in Figure 2).  

ecdh.b233

54%

10%

9%

5% 2% 2% 3%

5%

3%

7%

mr_mul2
reduce2
mr_sqr2
karmul2
mr_bottom4
mr_lzero

copy
add2
square2
other

 
ecelgenc.b233

38%

5%

6%

7%

10%

13%

6% 3% 3% 4% 5%

mr_mul2
numbits
copy
reduce2
mr_sqr2
karmul2
add2
mr_bottom4
shiftleftbits
mr_lzero
other  

ecelgenc.b233

38%

5%

6%

7%

10%

13%

6% 3% 3% 4% 5%

mr_mul2
numbits
copy
reduce2
mr_sqr2
karmul2
add2
mr_bottom4
shiftleftbits
mr_lzero
other

ecdsign.b233

3%3% 3%2%2%

27%

5%

18%

19%

18%

shs_transform
shs_process
mr_mul2
file reading
reduce2

hashing
mr_sqr2

karmul2
mr_bottom4
other

ecdsver.b233

3% 4% 4%

18%

17%

18%26%

6% 2% 2%

shs_transform
shs_process

mr_mul2
file reading
reduce2
mr_sqr2
hashing

karmul2
mr_bottom4
other

 
Figure 2: Breakdown of execution time in terms of 

program functions (cycle level profiling). 
Coordinates used were projective, the key length 

is 233 bits. 
 

Figure 2 shows that digital signature and verification 
benchmarks have a very similar distribution of 
function usage. This is reasonable because verification 
procedure is made up of the signature calculation, 
followed by a comparison of calculated and received 
digital signatures. However, even in the case of digital 
signature, the most time-consuming finite field 
operation is word-level polynomial multiplication 
(18%, Figure 2). Overall, the impact of addition, 
squaring, reducing and inversion is at most 20% (ecdh 
benchmark), and is less important than finite field 
multiplication.  
Based on the previous analysis, which showed that the 
word-level polynomial multiplication is the most time-
critical operation, we decided to measure the impact of 
extending ARM instruction set with the instruction for 
polynomial word-level multiplication in binary finite 
fields. We called this instruction MULGF, similar as 
in [1]. The appropriate calls of C procedure for 32-bit 
polynomial multiplication in software were substituted 
with a single MULGF instruction. The MULGF 
instruction was modeled to have a delay of three 
cycles, as the integer multiplier unit of ARM 



processor. Polynomial multiplication is essentially 
identical to integer multiplication, except that all 
carries are suppressed. Proposals for designing flexible 
multipliers already exist [16]. In our case, we only 
need the capability of doing bit addition both with and 
without carry. As in the standard full-adder circuit, the 
dual field adder has two XOR gates connected serially. 
Thus, its propagation time is not larger than that of 
full adder. Their areas differ slightly, but this does not 
cause a major change in the whole circuit. 

The impact of adding the MULGF instruction for 
word-level polynomial multiplication in finite field is 
shown in Figures 3 and 4. Number of dynamically 
executed instructions, as well as the execution time, is 
lower by approximately one-third in average, with 
projective coordinates and when all key sizes are taken 
into account. This average result is in line with 
expectations, in fact, as the software implementation 
takes 500 cycles, the 3-cycle hardware implementation 
allows to reduce by a factor of 3/500 the time spent 
into word-level polynomial multiplication: from 34% 
on average (Figure 2) down to a negligible quota (i.e. 
less than 0.5%). 

The improvement in execution time is more 
significant for Diffie-Hellman (54% in number of 
instructions and 55% for execution time in GF(2233)) 
and El-Gamal algorithms (48% for encryption and 
37% for decryption in number of instructions, i.e. 39% 
and 35% in execution time in GF(2233)), where 32-bit 
polynomial multiplication is more used. The 
improvement for digital signature algorithm is more 
modest (19% in instruction number and 17% in 
execution time for the same key length), but still 
significant. 

Given the similarity of Figures 3 and 4, it is clear 
that memory does not influence significantly ECC 
performance, when the cache size is 32KB+32KB, and 
that the working set of ECC algorithms is small. 

In order to analyze the benchmark influence on the 
cache sub-system, we have explored various cache 
configurations with cache size ranging from a few 
hundred bytes to 64-KByte. Among them, we have 
selected here a couple of interesting cases. Firstly, 32-
KByte high associativity (i.e. 32 way) I- and D-caches, 
which are representative of present Intel XScale 
processors based on ARM cores. Secondly, 
1KByte+1KByte direct-mapped I- and D-caches, 
which match the average working-set size of the 
considered ECC benchmarks, and thus allow 
analyzing very precisely the effects on the memory 
hierarchy before and after the MULGF instruction is 
added. In particular, figure 5 shows the CPI before 
and after adding the MULGF instruction for 
1KByte+1KByte I- and D-caches. The CPI is divided 

into two parts: the first one due to processor operation, 
and the second one is due to memory operations. 

 

0

50

100

150

200

250

ecdh.b163

ecdh.b233

ecdh.b283

ecdsign.b163

ecdsign.b233

ecdsign.b283

ecdsver.b163

ecdsver.b233

ecdsver.b283

ecelgenc.b163

ecelgenc.b233

ecelgenc.b283

ecelgdec.b163

ecelgdec.b233

ecelgdec.b283

millions number of dynamic instructions without MULGF

number of dynamic instructions with MULGF

 
Figure 3: Number of dynamic instructions for 

projective coordinates before and after adding the 
MULGF instruction for word-level polynomial 

multiplication. 
 

Total execution time (millions of cycles)

0
50

100
150
200
250
300
350
400
450
500

ecdh
.b

16
3

ecdh
.b

23
3

ecdh
.b

28
3

ecdsign
.b1

63

ecdsign
.b2

33

ecdsign
.b2

83

ecdsver.b1
63

ecdsver.b2
33

ecdsver.b2
83

ecelge
nc.b

16
3

ecelge
nc.b

23
3

ecelge
nc.b

28
3

ecelgd
ec.b

16
3

ecelgd
ec.b

23
3

ecelgd
ec.b

28
3

affine coordinates
affine coordinates with MULGF
projective coordinates

projective coordinates with MULGF

 
Figure 4: A comparison of the total execution time 

(millions of cycles) for projective and affine 
coordinates before and after adding the MULGF 

instruction. 

CPI

0

1

2

3

4

5

6

7

ecdh.b233

ecdh.b233 w
ith M

U
LG

F

ecdsign.b233

ecdsign.b233 w
ith M

U
LG

F

ecdsver.b233

ecdsver.b233 w
ith M

U
LG

F

ecelgenc.b233

ecelgenc.b233 w
ith M

U
LG

F

ecelgdec.b233

ecelgdec.b233 w
ith M

U
LG

F

CPI processor CPI memory

 
Figure 5: CPI (divided into processor and 

memory shares) before and after adding MULGF 
instruction, with 1KB + 1 KB direct-mapped 

instruction and data cache. 
 
 

The total CPI is lower in average by 27% after adding 
MULGF instruction, with largest improvement by 
37% and 44% for digital signing and verification, 
respectively. This highlights two points: 
a) average CPI-processor of the ECC benchmarks is 

similar to the software implementation of 
MULGF (mr_mul2); 



b) execution time reduction derives from the lower 
number of instructions executed (processor 
elaboration) and from improved “memory” CPI 
(lower number of accesses to I- and D-cache). 

 
Figure 6 shows instruction and data cache miss 

rates with and without MULGF support. From Figure 
6, we see that while instruction cache miss rates are 
lower, data cache miss rates grow after adding 
MULGF instruction. This happens because, after 
adding MULGF, the instructions of the software 
implementation of MULGF (mr_mul2, Figure 1) are 
not loaded anymore in the instruction cache, and the 
benchmark working set can fit better in it. 

 
Instruction and data cache miss rates

(1KB + 1KB direct mapped caches, block size 32 bytes)

0
1
2
3
4
5
6
7
8

e
cdh.b1

63

e
cdh.b2

33

e
cdh.b2

83

e
cdsign

.b
16

3

e
cdsign

.b
23

3

e
cdsign

.b
28

3

e
cdsver.b1

63

e
cdsver.b2

33

e
cdsver.b2

83

e
celg

enc.b1
63

e
celg

enc.b2
33

e
celg

enc.b2
83

e
celg

dec.b1
63

e
celg

dec.b2
33

e
celg

dec.b2
83

instr cache miss rate without MULGF instr cache miss rate with MULGF
data cache miss rate without MULGF data cache miss rate with MULGF

 
Figure 6: Instruction and data cache miss rates in 

percentages. 
 

In the data cache, miss rate increases because the 
number of misses remains practically the same, but 
cache accesses decrease.  
In fact, mr_mul2 function performs many operations 
on a few local variables and thus its memory accesses 
are essentially hits.  

Finally, in our analysis we considered also the use 
of affine coordinates in ECC and studied the 
performance of affine-ECC with MULGF instruction 
present (Figure 4). Our experiments show that adding 
MULGF has smaller impact when affine coordinates 
are used, because of the smaller number of finite field 
multiplications used (in affine coordinates, inversion 
in the finite field cannot be avoided, but some 
multiplications can be saved). 
In case when affine coordinates are used, number of 
instructions and the execution time are lower, if 
MULGF is adopted, on average by 13% for all 
benchmarks. In addition, according to our 
experiments, projective coordinates are advantageous 
over affine ones both in a pure software 
implementation and when MULGF instruction is 
available.  
The improvement obtained by projective-MULGF 
implementation over affine coordinates without 

MULGF is approximately fourfold in average for all 
benchmarks, in both instruction number and execution 
time (Figure 4). 
 

5. Related work 
 

Proposal of extending instruction set for public-key 
cryptography purposes can be found in [1]. In that 
work, some instruction set extensions for Intel and 
Sparc processors were proposed; among these, the 
polynomial multiplication in binary finite fields, called 
MULGF2. However, the effects of extensions were not 
evaluated. There is an intensive ongoing research in 
improving the efficiency of elliptic curve operations, 
as well as their performance analysis. An extensive 
study of efficient methods for elliptic curve arithmetic 
in binary finite fields for NIST-recommended curves 
can be found in [6]. A workload characterization of 
some public-key and private-key algorithms, including 
their elliptic curve equivalents for binary polynomial 
fields is found in [5]. They characterize operations in 
Diffie-Hellman, digital signature, and El-Gamal 
elliptic curve methods, and demonstrate that these 
algorithms can be implemented efficiently with a very 
simple processor.  

Recently, few proposals of scalable dual-field 
cryptographic processors have appeared. Satoh and 
Takano in [15] propose ECC processor architecture 
that can support GF(p) and GF(2m)  fields for arbitrary 
prime numbers and irreducible polynomials by 
introducing a dual-field multiplier.  

 

6. Conclusions 
 

We presented an evaluation of instruction set 
extensions of a typical embedded processor for elliptic 
curve cryptography that can efficiently replace a 
coprocessor that is typically used for improving 
performance of ECC. Based on the analysis of typical 
elliptic curve cryptography benchmarks, we proposed 
to extend the ISA for word-level polynomial 
operations in binary finite fields. We considered the 
most important instruction that is used in such ISA, 
namely MULGF, and evaluated its impact on ECC 
performance for ARM processor. MULGF instruction 
for word-level polynomial multiplication can be added 
to existing ARM hardware by integrating a 
polynomial multiplier into existing datapath. Adding 
of this instruction is more justified when projective 
coordinates are used instead of affine, because when 
projective coordinates are used, finite field inversion is 
avoided at the price of higher number of finite field 
multiplications. In such case, the new instruction 



improves the execution time on average by 33%, and 
decreases the number of dynamically executed 
instructions by 33%. Elliptic curve cryptography 
algorithms do not require large caches because of their 
reduced working set size. This information may be 
useful to design devices like smart-cards where the 
system runs the same program for its entire lifetime. 
Adding MULGF instruction lowers the instruction 
cache miss rate, while data cache miss rate increases 
because the data working set (and consequently the 
number of misses) remains the same, while number of 
accesses decreases. In the future, we intend to examine 
the effects of adding MULGF instruction when other 
multiplication algorithms are used, as well as to 
explore other possible instruction set extensions for 
elliptic curve cryptography. 

 

Acknowledgments 
 
This work is supported by Italian Ministry of 
Education, University and Research, under 
subcontracting of project FIRB “Reconfigurable 
platforms for wideband wireless communications”, 
protocol RBNE018RFY and by the University of Siena 
through the project “Innovative processor architectures 
for embedded multimedia applications” PAR-2003. 
We thank the anonymous reviewers for their useful 
comments. 
 

References 
 
[1] T. Acar, “High-speed algorithms and architectures for 
number-theoretic cryptosystems”, PhD thesis, Oregon State 
University, 1998. 
[2] ARM Web site, http://www.arm.com 
[3] T. Austin, E. Larson, D. Ernst, “SimpleScalar: An 
Infrastructure for Computer System Modeling”, IEEE 
Computer, Volume 35, Issue 2, pp. 56-59, 2002. 
[4] I.F. Blake, G. Seroussi, N.P. Smart, Elliptic Curves in 
Cryptography, Cambridge University Press, 1999. 
[5] A.M. Fiskiran and R.B. Lee, “Workload characterization of 
elliptic curve cryptography and other network security 
algorithms for constrained environments”, Proceedings of the 
5th IEEE Annual Workshop on Workload Characterization, 
pp. 127-137, 2002. 
[6] D.R. Hankerson, J.C. Lopez Hernandes, and A.J. 
Menezes, “Software implementation of elliptic curve 
cryptography over binary fields”, Cryptographic Hardware 
and Embedded Systems - CHES 2000, pp. 1-24, Springer 
Verlag, 2000. 
[7] IEEE P1363 Standard Specifications for Public-key 
Cryptography, http://grouper.ieee.org/groups/1363/ 
[8] Intel Corporation, The Intel XScale Microarchitecture 
Technical Summary, 

ftp://download.intel.com/design/intelxscale/XscaleDatasheet4.
pdf 
[9] A. Karatsuba, Y. Ofman, “Multiplication of multidigit 
numbers on automata”, Soviet Physics - Koklady, Vol. 7, pp. 
595-596, 1963. 
[10] H. Li, C.N. Zhang, “Efficient Cellular Automata Based 
Versatile Multiplier for GF(2m)”, Journal of Information 
Science and Engineering 18, pp. 479-488, 2002. 
[11] Miracl big integer library Web site, 
http://indigo.ir/~mscott 
[12] National Institute of Standards and Technology, Secure 
Hash Standard, FIPS Publication 180-1, 1995. 
[13] National Institute of Standards and Technology, Digital 
Signature Standard, FIPS publication 186-2, 2000. 
[14] RSA Laboratories' FAQs about today's cryptography, 
http://www.rsasecurity.com/rsalabs/faq 
[15] A. Satoh, K. Takano, “A Scalable Dual-Field Elliptic 
Curve Cryptographic Processor”, IEEE Transactions on 
Computers, Vol. 52, No. 4, pp. 449-460, April 2003. 
[16] E. Savas, A.F. Tenca, C.K. Koc, “A scalable and unified 
multiplier architecture for finite fields GF(p) and GF(2m)”, 
Cryptographic Hardware and Embedded Systems - CHES 
2000, pp. 227-292, Springer-Verlag, 2000. 
[17] SimpleScalar LLC Home Page, 
http://www.simplescalar.com 


