
New Parallel Programming Models

Siena, 9-13 Feb. 2009

Osman S. Unsal

Adrian Cristal

BSC – Computer Architecture for Programming Paradigms Group

2

Tentative course schedule

• MON 9/2: 9:00-->12:00
– Introduction to Computer Architecture

– Why is parallel programming so important now?

– Basic TM concepts

• TUE 10/2: 9:00-->12:00
– STM and HTM

– TM Issues: I/O, privatization, failure atomicity

• WED 11/2: 10:00-->12:00 + 14:00-->16:00
– Lab exercise I (working with Intel STM Compiler)

• THU 12/2: 10:00-->12:00 + 14:00-->17:00
– Lab exercise II (writing TM applications)

• FRI 13/2: 9:00-->12:00
– Discussion on other emerging programming models

– Wrap-up

– Quiz?

3

Where do we stand?

• Disclaimer: We will make a best effort at being impartial
and not favoring HW over SW. BUT our background is
more on HW.

4

Computation Evolution

•1854: Boolean Algebra by G. Boole

•1904: Diode vacuum tube by J.A. Fleming

•1938: Boolean Algebra and Electronics Switches,by C.
Shannon

•1946: ENIAC by J.P. Eckert and J. Mauchly

•1945: Stored program by J.V. Neuman

•1949: EDSAC by M. Wilkes

•1952: UNIVAC I and IBM 701

5

Eniac, 1946, Moore School
18000 vacuum tubes, 70000
resistors and 5 million soldered
joints.
Consumed 140 Kilowatts.
It was 8 by 3 by 100 feet and
weighted more than 30 tons.
It could do 5000 additions and
360 multiplications per second.

Eniac

6

Technological Achievements

• Transistor (Bell Labs, 1947)

– DEC PDP-1 (1957)

– IBM 7090 (1960)

• Integrated circuit (1958)

– IBM System 360 (1965)

– DEC PDP-8 (1965)

• Microprocessor (1971)

– Intel 4004

7

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have become

smaller, denser, and more powerful.

Not just processors, bandwidth,

storage, etc

Gordon Moore (co-founder of

Intel) predicted in 1965 that the

transistor density of semiconductor

chips would double roughly every

18 months.

Technology Trends:
Microprocessor Capacity

8

Computer Architecture is

• About the interface between what technology can
provide and what the people/market demand

• At that interface we have our design point:
– Reliability

– Availability

– Cost

– Power

– Performance

Yale Patt, University of Austin at Texas

9

Processor Organization: Basic Concepts

• Instruction
types:

– Load/Store
– Operation
– Control

Control

Unit

Memory

Instructions + Data

. . .

Register File

Instructions
load Rx := M[]

store M[] := Rx

Ri := Rj op Rk

Branch (cond.)

Processor

10

Pipeline (H. Ford)

11

Program Dependences

• Data dependences

• Control dependencies

a Ri := …

b := Ri op Rj

c Ri := ...

DataData dependences
a and b (RAW)

Name dependences
b and c (WAR)
a and c (WAW)

.

.

.
a
.
.
.
b branch (cond.) a

b+1

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

CU

Main Memory

. . .

RF

12

Superscalar Processor
F

et
ch

D
ec

o
d

e

R
en

am
e

In
st

ru
ct

io
n

W
in

d
o

w

W
ak

eu
p

+

se
le

ct

R
eg

is
te

r

fi
le

B
y
p

as
s

D
at

a
C

ac
h

e

Fetch of multiple instructions every cycle.

Rename of registers to eliminate added dependencies.

Instructions wait for source operands and for functional units.

Out- of -order execution, but in order graduation.

Predict branches and speculative execution

J.E. Smith and S.Vajapeyam.¨Trace Processors…¨ IEEE Computer.Sept. 1997. pp68-74.

R
eg

is
te

r
W

ri
te

C
o

m
m

it

13

Superscalar Processors

• Out of order (IPC <= 3)

F D R W

F D R E W

F D R W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R W

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E E E

Time

T = N * * tc

1
IPC

14

Processor-DRAM Gap (latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

D.A. Patterson “ New directions in Computer Architecture” Berkeley, June 1998

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

D.A. Patterson “ New directions in Computer Architecture” Berkeley, June 1998

15

Cache Memories

• Definition:

• Small and fast memory between the
CPU and main memory.

• Objetive:

• To reduce the access time for
instructions and data.

• Feasibility:

• Temporal and spatial locality of the
programs.

Main Memory

Cache

CPU

The memory hierarchy has an important

role towards efficiency

16

Latencies and Pipelines

• F D/
M
a
p

Q R E
x

D/
St

R
W

R
et

PC

Ic

a

c

h

e

Ic

a

c

h

e

Register
Map

D

c

a

c

h

e

R

e

g

s

R

e

g

s

R

e

g

s

10-20
cycles

100-1000
cycles

L2
Cache

Memory

Processor on a chip

1-3
cycles

1-3
cycles

17

18

19

Intel: Microprocessor Evolution

 Year/Month Clock =1/tc. Transistors. Micras

I4004 1971/11 108 KHz. 2300 10

I8080 1974/04 2 MHz. 6000 6

I8086 1978/06 10 MHz. 29000 3

I80286 1982/02 12 MHz. 0.13 m. 1.50

I486DX 1989/04 25 MHz. 1.2 m. 1

Intel DX2 1992/03 100 MHz. 1.6 m 0.8

Pentium 1993/03 60 MHz. 3.1 m 0.8

Pentium Pro 1995/11 200 MHz. 5.5 m 0.35

Pentium II 1998/ 450 MHz 7.5 m. 0.25

Pentium III 2000/01 1000 MHz. 28 m. 0.18

P4 2000/09 1400 MHz. 42 m. 0.18

20

21

22

Process Scaling

• Power = 1/2 C V2 F

• On each silicon process step (every 2 yrs)
– Capacitance decreases: 0.7x

– Supply voltage decreases: 0.9x

– Frequency increases: 1.4x

– Area improves: 0.5x

– Power: 0.7 * 0.92 * 1.4 = 0.8x

• for the same number of transistors

– 2x transistors => 0.8 * 2 = 1.6x power

Power is increasing at the rate of 1.6x every 2 yearsPower is increasing at the rate of 1.6x every 2 years

23

Medium High Very HighVariability

Energy scaling will slow down>0.5>0.5>0.35Energy/Logic Op
scaling

0.5 to 1 layer per generation8-97-86-7Metal Layers

11111111RC Delay

Reduce slowly towards 2-2.5<3~3ILD (K)

Low Probability High ProbabilityAlternate, 3G etc

128

11

2016

High Probability Low ProbabilityBulk Planar CMOS

Delay scaling will slow down>0.7~0.70.7Delay = CV/I scaling

256643216842Integration Capacity
(BT)

8162232456590Technology Node
(nm)

2018201420122010200820062004High Volume

Manufacturing

Shekhar Borkar, Micro37, P

Technology Outlook

24

25

26

27

• Moore´s law enables doubling of transistors on chip
every 18 months, increasing clock speed as well.
However
– Increase of clock speed is slowing down
– Diminishing performance gain per unit area for

single core design
– Increase performance by replicating cores
– Doubling the number of cores on chip ever 18

months, maybe a new law?

• Why should we care?
– Power density
– Additional transistors just waste Watts

• Enter chip multiprocessors
– No more increase in single-core performance!

Right-hand Turn

28

Some Examples of CMP

Sony/IBM/Toshiba Cell (9 cores)

IBM Cyclops64 (80 cores, in development)Sun Niagara (8 cores)

Microsoft/IBM Xbox360 (3 cores)

29

30

Intel´s Petaflop chip

• 80 processors in a die of 300 square mm.

• Terabytes per second of memory bandwidth

• Note: The barrier of the Teraflops was obtained by Intel in
1991 using 10.000 Pentium Pro processors contained in
more than 85 cabinets occupying 200 square meters ☺

• This will be possible soon

31

Intel 80-core chip

• First many-core silicon prototype
–80 special purpose processor cores configured as a 2D mesh (8 x

10)

• Tapeout Q2’06
–Tiled processor architecture

–Scalable on-die interconnect fabric

–Memory bandwidth – 3D stacking

–Dynamic power management

32

Intel 80-core chip

• Array of 80 tiles
–Each tile has a compute element and router - reused

from earlier projects

–Tiling simplifies the implementation

–Total die size: 300mm2

–Transistor count: 100M

–Frequency: 5 GHz

• Power efficiency

–Achieves 8 GFLOPS/W @ Teraflop performance

• Mapped applications

–LINPACK routines using dedicated ISA

33

Intel 80-core chip

Processor

Package

TSVs

Inter-die interconnections

3D Face-to- Face Stacking

C4 bumps

Technology

• Prototype SRAM with face-to-face 3D die stacking

• Memory bit density: 210 KBytes/tile

• 80 tiles in 13.75x22mm for 16 MB total

Bandwidth

• 40 GB/s/tile at 5 GHz, full duplex

• Aggregate 3.2 TB/s

34

235 Mtransistors
235 mm2

Cell processor architecture

35

Programming Model:

Shared Memory

ThreadThreadThreadThreadThreadThreadThreadThread

Erik Hagersten, ACACES-2006

36

Caches:
Automatic Migration and Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A

Read A

…

…

Read A

A:

...

Read A

…

B:

Read B

…

Read A

Erik Hagersten, ACACES-2006

37

The Cache Coherent Memory System

Shared Memory

Thread

$

Thread

$

Thread

$

Read A

Read A

…

…

A:

...

Read A

…

Write A

B:

Read B

…

Read A

INV INV

Erik Hagersten, ACACES-2006

38

The Cache Coherent 2

Shared Memory

Thread

$

Thread

$

Thread

$

Read A

Read A

…

…

Read A

A:

...

Read A

…

Write A

B:

Read B

…

Read A

Erik Hagersten, ACACES-2006

39

Hybrid SMP-cluster parallel systems

• Most modern high-performance computing systems are

clusters of SMP nodes (performance/cost trade-off)

• Programming models allow to specify:
– How computation is distributed?
– How data is distributed and how is it accessed?
– How to avoid data races?

Interconnection NetworkInterconnection Network

Memory

P P P P

Memory

P P P P

Memory

P P P P

Memory

P P P P

SMP SMP SMP SMP

Interconnection NetworkInterconnection Network

Memory

P P P P

Memory

P P P P

Memory

P P P P

Memory

P P P P

SMP SMP SMP SMP

40

Serial Code

real*4 X(400)

do 10 i=1,400

X(i)=i

10 continue

S=0

do 30 i=1,400

S=S+X(i)

30 continue

write(6,*) '1+...+400=',S

stop

end

parameter(n=400,np=4)

parameter(masterpid=0)
real*4 X(400)
integer to_p,from_p,tag,mypid,pnum
call MPI_init(4)
call MPI_comm_rank(MPI_COMM_WORLD,mypid)
call MPI_comm_size(MPI_COMM_WORLD,pnum)
if(mypid.eq.masterpid) then

do 10 i=1,400
X(i)=i

10 continue
do 20 to_p=1,3
tag=0
call MPI_send(X(100*to_p+1),100,MPI_REAL,to_p,tag,MPI_COMM_WORLD)

20 continue
else

from_p=0
tag=0
call MPI_recv(X(1),100,MPI_real,from_p,tag,MPI_COMM_WORLD,idummy)

endif
S=0
do 30 i=1,100

S=S+X(i)
30 continue

if(mypid.ne.masterpid) then
to_p=0
tag=1
call MPI_send(S,1,MPI_REAL,to_p,tag,MPI_COMM_WORLD)

else
do 40 from_p=1,3
tag=1
call MPI_recv(SS,1,MPI_REAL,from_p,tag,MPI_COMM_WORLD,idummy)
S=S+SS

40 continue
write(6,*)'1+..+400=',S

endif
call MPI_barrier(MPI_COMM_WORLD)
call MPI_finalize
stop
end

MPI

CPU

HPFMPI

Receive Open MP

Send
Barrier

Increasing Complexity of Increasing Complexity of

ProgrammingProgramming

41

A new wall is on the horizon

• Programmer productivity problem

• How to program 100s of cores on chip efficiently?

• If not prepared today, we will hit a productivity wall (we were
unprepared and hit another wall, power density, in single cores)

• All those cores will only make sense if they can be used efficiently

– Intel, AMD, Microsoft, … are more concerned than you think

– This is a big gamble!!!

• Lock-based programming is highly problematic

• Transactional Memory is a promising solution

– Context: Shared memory CMPs

42

Top-down Architecture

• Top-down architecture, include:
– Application

– Debugging

– Programming models

– Programming languages

– Compilers

– Operating Systems

– Runtime environment

As design drivers

43

What is Transactional Memory (TM) ?

• TM optimistically runs transactions in parallel, in the hope that they do not
perform conflicting memory accesses.

• If the transactions do not conflict then the optimism has paid off.

• If transactions do attempt conflicting accesses, then the TM must delay or
abort the work of one or the other.

• The partial effects of aborted transactions are "rolled back" before they are
re-executed .

44

Why is TM attractive?

• Consider a concurrent FIFO implementation.
– One thread can enqueue items at the tail of the queue while at the same time

– Another thread can dequeue items from the head of the queue

• Simple problem, right?

• Solving this problem with locks efficiently is quite difficult (Michael and Scott
1996)

• Solutions to such simple problems with fine-grained locking are considered
difficult enough to be publishable results!

45

Why is TM attractive? (cont.)

class Queue {

QNode head;

QNode tail;

public enq(Object x) {

atomic {

QNode q = new QNode(x);

q.next = head;

head = q;

}

}

...

}

•Implementing a

concurrent FIFO using

TM is trivial

Transaction Execution
• The TM system lets different threads to execute the

atomic regions speculatively.

• The TM system guarantees:
– Atomicity – all tentative memory changes become visible to the

other threads simultaneously at the time when a transaction
commits.

– Isolation – while transaction executes the tentative memory
updates are not visible by the other threads.

Transactions vs. Locks

• Non-blocking
synchronization

• Deadlock free

• Composable

• Easy programmable

• Efficiency of fine grain
locks

• Blocking synchronization

• Deadlock risk

• Non-composable

• Coarse grain locks limit
TLP

• Fine grain locks are
difficult to program

Transactions Locks

B1

Slide 47

B1 Osman added
BSC-CNS, 9/2/2007

Hardware Transactional Memory
• Implementation on top of caches and coherency protocol.

• Examples: TCC [ISCA2004], LogTM [HPCA2006]

• Advantages:
– very fast

– strong isolation

• Disadvantages:
– limited in time (context switch, page fault)�

– limited in space (overflows)�

– Inflexible (static management)�

Software Transactional Memory
• Implemented as a library

• Examples: TL2, Nebelung, RTM, DSTM

• Advantages:

– flexible (conflict management)�

– unlimited in time and space

• Disadvantages:

– very slow

– difficult to program without compiler support

– strong isolation is very expensive

B2

Slide 49

B2 If you have time, have souces for all of those and the HyTM ones (e.g. Nebelung (Iteract 2007)
BSC-CNS, 9/2/2007

Hybrid Transactional Memory

• Attempts to compensate the disadvantages of both HTM
and STM

• HTM
– virtualizes HTM in time and space

– examples: HyTM, VTM, PTM

• STM

– accelerates the slow and frequent STM operations in hardware

– examples: HASTM, RHTM, SigTM

51

Versioning and Conflict resolution

• Conflicts happen if
– One transaction (attemps to) reads a data item while another

one tries to write to the item

– At least two transactions (attempt to) write a data item

• If conflict is detected one of the transactions could be
aborted

• Basic implementation requirements
– Data versioning

– Conflict detection & resolution

52

Versioning

• Manage uncommited(new) and commited(old) versions of data for
concurrent transactions

1.Eager (undo-log based)

•Update memory location directly; maintain undo info in a log

+Faster commit, direct reads (SW)

–Slower aborts, no fault tolerance, weak atomicity (SW)

2.Lazy (write-buffer based)

•Buffer writes until commit; update memory location on commit

+Faster abort, fault tolerance, strong atomicity (SW)

–Slower commits, indirect reads (SW)

53

Conflict Detection and Resolution

• Detect and handle conflicts between transaction
– Read-Write and (often) Write-Write conflicts

– For detection, a transactions tracks its read-set and write-set

1. Eager detection

•Check for conflicts during loads or stores

�HW: check through coherence lookups

�SW: checks through locks and/or version numbers

•Use contention manager to decide to stall or abort

�Various priority policies to handle common case fast

2.Lazy detection

•Detect conflicts when a transaction attempts to commit

�HW: write-set of committing transaction compared to read-set of others

–Committing transaction succeeds; others may abort

�SW: validate write-set and read-set using locks and version numbers

54

Readset / Writeset

• Readset: The set of all the distict memory locations read
by a transaction

• Writeset: The set of all the distinct memory locations
written by a transaction

