
HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 19-12-2018 MATR.NO.__________________

(REVISION 1.1) SURNAME__________________

 FIRST NAME__________________

1) (POINTS 25/40) Consider a four-processor bus-based multiprocessor using the DRAGON protocol. Each processor
executes a TAS instruction to lock and gain access to an empty critical section. The initial condition is such that
processor 1 has the lock and processor 2, 3, and 4 are spinning on their caches waiting for the lock to be released. Every
processor gets the lock once and exits the program. These are the implementations of the lock and unlock:

Lock: lw R1, mylock # R1 = &mylock
 bne R1, R0, Lock # if (R1 != 0) jump to Lock
 TAS R1, mylock # atomically_do {R1 = &mylock; mylock = 1;}
 bne R1, R0, Lock # if (R1 != 0) jump to Lock
 ret

 Unlock: sw 0, mylock # write 0 into &mylock
 ret

Note1: the semantic of the TAS (Test And Set) instruction is the following: atomically reads the specified memory location (mylock) and writes a one
into that memory location (mylock). Note2: this implementation of the Lock tries to minimize the probability to have the bus locked by the TAS (this
implementation is also known as Test-and-Test-and-Set). Note3: the lock is closed when mylock==1 and it is open when mylock==0.

By using the following tables, show the operations and bus transactions (or comments): A) in the best case (least number
of transactions) and B) in the worst case (highest number of transactions)

A) Best case:

B) Worst case:

2) (POINTS 15/40) Write a OPENMP function that reads a color array (int color[1024]) and writes an array “int
histogram[256]” that contains the frequency of each of 256 possible colors (the 256 values are the value that each element
of color[] can assume). A serial or serialized version has to be avoided. The program should be written in a way that it
exploits Thread Level Parallelism as offered by. Template:

void histo_scalar(uint *histogram, uchar *color, uint size) {
 for(uint i=0; i<size; i++) histogram[color[i]] += 1;
}

Hints: Use omp_get_max_threads() to get the number of threads, omp_get_thread_num() to get the current thread id, “#pragma omp
parallel”, “#pragma omp for” and “#pragma omp critical” as appropriate, try to perform operations in a hierarchical way.

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- Init.state SC SC SC SC Initially, P1 holds the lock
1 sw1 SM SC SC SC BusUpd – P1 releases the lock

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- Init.state SC SC SC SC Initially, P1 holds the lock
1 sw1 SM SC SC SC BusUpd – P1 releases the lock

