H GH PERFORMANCE COMPUTER ARCHI TECTURE 18- 12- 2015 MATRI CULATI ON NO.
(FI NAL TEST) SURNAVE
FI RST NAME

1) (POINTS 20/40)Consider the four-iterate Jacobi method shown #isariollowing flowchart.

T | X|:a|1Y1—a1gY2—a|3Y3+a‘4Yg Xz a;,1Y1+a42Y +ag3YgtanqYs |

Te: | X3—331YI+33 V2‘333Y3"‘33-1Y¢ T4 | X_‘_a 1YitaeYs +343Y3+34 A |
T: | Yi=ayXi+a Xy +313X3+314X4 Yo=a5 1X|+a2 Xo+8p5Xg+804%s
T3 | ¥g=ag X +agXgt 333X3+334X4 T4 | Y4 a1 Xy +aupXorayaata Xy |

@

In this flowchart, during every iteration four tls concurrently compute the new values of a véGias a linear
function of Yivalues. Then the threads use a barrier synchrdaorizat

Then the four Yvalues are concurrently computed using theaXues generated prior to the barrier. The threads
then wait again to perform a convergence testsfiecific convergence criterion is met, the progeits;
otherwise it loops back to tha @omputation.

(1a) First, transform the flowchart into a pseudtetor a parallel algorithm using a barrier synclization
primitive, similar to the pseudocode shown in Fegbr2. Assume that at the end of the second bahneer
convergence test function is executed as a sihgéad before returning to the loop or exiting thegpam.

(1b) Transform the flowchart into an OpenMP patglegram using compiler directives.

(1c) Transform the flowchart into a P-Thread patgiogram using the P-Thread API.

(1d) Transform the flowchart into a Cilk parallebgram using the cilk_sync, cilk_spawn, cilk_foreditives.

2) (points 20/40)
This problem is about the sensitivity of cache ess® actual timing and to the memory consistenogieh We
use the Jacobi algorithm and its overhead undé@uscache coherence protocols to demonstrat@aiis. A
flowchart for this algorithm is shown above.
Assume that the caches have infinite size (i.egapacity misses and no conflict misses) and Heagalgorithm
has been running for a while (i.e., no cold missdsever, because of the cache coherence protweatpw
have only coherence misses, i.e., misses due atidations (the fourth C in the classification)mvalidation-
based protocol or updates in update-based protd@etmuse matrix A is read-only, accesses to mAtmwill not
miss at all. We also ignore misses due to baryiectzronization. Hence, in this problem we focusaocoesses to
X and Y. All the components of X hold in the sanaglte block, and all the components of Y hold inghme
cache block. Because X and Y are shared writabsiablas, they have been declared as volatile dchbg are
not allocated in register by the compiler.
The sequence of memory accesses in thread 1 (Wlakml X (in process order) is as follows:

rYl wXi, rY2, wX1, rY3, wX1, rY4, wX1, rX1, wY1, rX2,wY1, rX3, wY1, rX4,wY1l,...,

where r means “read” and w means “write.” The sages of accesses to X and Y by T2, T3, and T4ianias.
We consider three protocols: MSl-invalidate, MSHate, MESI protocols.

(2a) Assume first that the system is sequentiahsistent. Processors run at exactly the same spekohust
globally perform their memory accesses one by oréat the four threads interleave their accessdod Y
round-robin. For instance, processors each exdoeiteread of Y1 in turn first, then they execuieit write to X
in turn, etc. What is the number of coherence migsall processors for one iteration of the ertiagp of Jacobi,
for MSI, and MESI invalidate protocols? What is thenber of updates in MSl-update?

(2b) Repeat (2a) for different timing. We assuna the system is still sequentially consistent glothally
performs each access one at a time. However, timalghterleaving of accesses is different. Thentinis such
that, in both the first and second phases of #ratibn, threads execute all their memory accessim First T1,
then T2, then T3, and finally T4. Then in the setphase we have the same behavior: T1, T2, T3T4nd

