COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12-2025

MATRICOLA

DA RESTITUIRE INSIEME AGLI ELABORATI e A TUTTI I FOGLI
- NON USARE FOGLI NON TIMBRATI
- ANDARE IN BAGNO PRIMA DELL’INIZIO DELLA PROVA
- NO FOGLI PERSONALI, NO TELEFONI, SMARTPHONE/WATCH, ETC

COGNOME
NOME

NOTA: dovra essere consegnato 1’elaborato dell’es.1 come file <COGNOME>.s

1) [22/30] Trovare il codice assembly RISC-V corrispondente al seguente micro-benchmark (utilizzando solo e unicamente istruzioni
dalla tabella sottostante), rispettando le convenzioni di uso dei registri dell’assembly (riportate qua sotto, per riferimento).

float sum abs_pairwise(float *p, int N) {

float s 0.0f;

for (float *pi = p; pi < p + (N - 1); ++pi)
for (float *pj = pi + 1; pj < p + N; ++pj) {
float d = *pi - *pj;

int main()

{

int N = 6;

float *p = (float*) sbrk(N * sizeof(float));

for (int k = 0; k < N; ++k) *(p + k) (float)k - 4.5f;
float s sum_abs_pairwise(p, N);

if (d < 0.0f) d = -d; print_string("Sum abs pairwise diffs: "); print_ float(s);
s += d; exit (0) ;
} }
return s;
}
RISCYV Instructions (RV64IMFD) v230703
Instruction coding (hexadecimal) . .) Meaning
funct7/imm lfunct3] opcode Instruction Example Register operation (** instructions available only in RV64, i.e. 64-bit case)
00 0 | 33/3b [add add/addw x5,x6,x7 x5 € x6 +x7 Add two operands; exception possible (addw**)
20 0 | 33/3b | subtract sub/subw x5,x6,x7 x5 € x6 - X7 Subtracts two operands; exception possible (subw**)
imm 0 [13/1b | add immediate addiladdiw x5,x6,100 x5 € x6 + 100 Add a constant ; exception possible (addiw**)
01 0 | 33/3b | multiply mul/mulw x5,x6, x7 x5 € x6* x7 (signed/word) Lower 64 bits of 128-bits product (mulw**)
01 1 33 | multiply high mulh x5,x%6,x7 x5 € x6 * x7 Higher 64bits of 128-bits product
01 4 | 33/3b | division dividivw x5,x6,x7 x5 € x6/x7 (signed/word) division (divw**)
01 6 | 33/3b | reminder rem/remw x5,%x6,x7 x5 € X6 % x7 Reminder of the division (remw**)
00 2/3| 33 | seton less than slt/sltu x5,x6,x7 if (X6 <x7) x5 € 1;else x5 € 0 signed compare x6 and x7 (less than)
imm 2/3| 13 | seton less than immediate sltilsltiu x5,x%6,100 if (x6 < 100) x5¢ 1; else x5 €< 0 unsigned compare x6 and 100 (less than)
00 7/6/4] 33 | and/or/xor andlor/xor x5,x6,x7 x5€ xB&x7 [x6|x7 _/x6" x7 Logical AND/OR/XOR register operand
imm 7/6/4] 13 | and Jor | xor immediate andilorilxori x5,x6,100 x5 € x6&100/ x6]100 / x6100 Logical AND/OR/XOR constant operand
0 1 | 33/3b | shift left logical sll/sllw x5,x6,x7 x5 € x6 <<x7 Shift left by register (sllw**)
imm 1 | 13/1b | shift left logical i diat sllilslliw x5,x%6,10 x5 & x6<<10 Shift left by the immediate value (slliw**)
0 5 | 33/3b [shift right logical srllsrlw x5,x6,x7 x5 € x6 >>x7 Shift right by register (sriw**)
imm 5 | 13/1b | shift right logical immediate srlilsrliw x5,x6,10 x5 € x6>>10 Shift left by immediate value (srliw**)
20 5 | 33/3b [shift right arithmetic sralsraw x5,x6,x7 x5 & x6 >>x7 (arith.) Shift right by register (sign is preserved) (sraw**)
imm 5 | 13/1b | shift right arithmetic i t srailsraiw x5,x%6,10 x5 € x6 >>10 (arith.) Shift right by immediate value (sraiw**)
imm 3/2/0f 03 | load dword / word / byte 1d/1w/1b x5,100 (x6) x5 € MEM[x6+100] Data from memory to register
imm 6/4| 03 |load word /byte unsigned 1lwu/lbu x5,100 (x6) x5 € MEM[x6+100] Data from mem. To reg.; no sign extension (Iwu**)
imm 32| 23 | store dword/word / byte sd/sw/sb x5,100 (x6) MEM[x6+100] € x5 Data from register to memory (sw**)
imm[31:12] - 37 | load upper immediate lui x5,0x12345 x5 € 0x1234'5000 Load most significant 20 bits
x5 € &var PSEUDO INST. REAL: lui x5,H20(&var) ;ori x5, L12(&var)
PSEUDOINSTRUCTION load address 18 £, load address of(‘var’ in x5) INST. (H20=high 20 bits of &var; L12=low 12 bits of &var)
m:?;[‘}[f,gf(fs] 1‘;‘:;2‘20) 5 | 663 | jumptbranch /b label PC+=off (off=PC-8label) (PSINST) ~ |REAL INST.: jal x0,offset/beq x0,x0,offset
imm[31:12] (rd=1) - 6f | jump and link (offset) jal label x1€&(PC+4); PC+=offset (PS. INST.) REAL INST.: jal x1,offset (offset=PC-&label)
Imm (rd=0,rs=1) 0 67 | return from procedure ret PC&x1 (PSEUDO INST.) REAL INST.: jalr x0,0(x1)
imm 0 67 | jump and link register jalr x1, 100 (x5) x1 €& (PC +4); PC=x5+100 Procedure return; indirect call
imm+2 01 63 | branch on equal / not-equal beg/bne x5,x6,100 if (x5 = =/1= x6) PC=PC+100 Equal / Not-equal test; PC relative branch
00 (rs1=0,rs2=0,rd=0) | 0 73 | ecall ecall SEPC&PC;PC&STVEC;save PLIEPL=1;E=0 | Call OS (service number in a7); PL= privilege lev; IE=int.en.
08 (rs1=0,rs2=2,rd=0) | 0 73 | sret sret PC<SEPC; restore PL/IE Exit supervisor mode; PL= privilege lev; IE=int.en.
PSEUDOINSTRUCTION move mv x5,%6 x5 € x6 (PSEUDO INST.) REAL INST.: add x5,x0,x6
PSEUDOINSTRUCTION load immediate 1i x5,100 x5 € 100 (PSEUDO INST.) REAL INST.: addi x5,x0,100
PSEUDOINSTRUCTION no operation (nop) nop do nothing (PSEUDO INST.) REAL INST.: addi x0,x0,0
{0,1} / {45} 0 53 | floating point add/sub fadd/fsub. {s,d} £0,£1,£2 |f0&f1+2 | f0&f1-2 Single or double precision add / subtract
{8,9) / {c,d} 0 53 | floating point multiplication/division fmul/fdiv. {s,d} £0,£1,£2 [f0&f1*2 [f0&f1/f2 Single or double precision multiplication /_division
PSEUDOINSTRUCTION floating point move bet f-regs fmv. {s,d} £0,£f1 fo<f1 (PSEUDO INST.) REAL INST.: fsgnj.{s,d} f£0,6f1,6fl
PSEUDOINSTRUCTION floating point negate fneg.{s,d} £0,f1 f0o& —(f1) (PSEUDO INST.) REAL INST.: fsgnjn.{s,d} f0,6f1,6fl
PSEUDOINSTRUCTION floating point absolute value fabs.{s,d} £0,f1 f0& | f1] (PSEUDO INST.) REAL INST.: fsgnjx.{s,d} £f0,6fl,6f1l
{50,51} 0/1/2] 53 | floating point compare fle/flt/feq.{s,d} x5,£0,£1 |x5< (f0<f1) Single and double: compare f0 and f1 <=,<,==
{70,71} (rs2=0) 0 53 | move between x (integer) and f regs fmv.x. {s,d} x5, f0 x5<-f0 (no conversion) Copy (no conversion)
{78,79} (rs2=0) 0 53 | move between f and x regs fmv.{s,d}.x £0,x5 f0€x5 (no conversion) Copy (no conversion)
imm 2 7 | load/store floating point (32bit) flw/fsw £0,0 (x5) [f0&€MEM[x5] / MEM[x5]<f0 Data from FP register to memory
imm 3 7 | load/store floating point (64bit) £1d/£fsd £0,0 (x5) |f0&MEM[x5] / MEM[x5]&f0 Data from FP register to memory
21/20 (rs2=0) 7 53 | convert to/from double from/to single |fcvt.d.s/fcvt.s.d £0,f1l f0& (double)f1 / f0& (single)f1 Type conversion
{60,61} (rs2=0) 7 53 | convert to integer from {single,double} |fcvt.w.{s,d} x5, f0 x5€ (int)f0 Type conversion
{68,69} (rs2=0) 7 53 | convert to {single,double} from integer |fcvt.{s,d}.w £0,x5 f0< ({single,double})x5 Type conversion
{2¢,2d} (rs2=0) 0 53 | square root fsqgrt.{s,d} £0,£f1 f0< square root of f1 Single or double square root
{10,11} 0M/2| 53 | sign injection fsgnj/jn/jx.{s,d} £0,£f1,£2 |f0&sgn(f)[f1] / —sgn(f2)|f1] / sgn(f2)f1|Extract the mantissa and exp. from f1 and sign from f2
Register Register ABI Name Usage Register | ABI Name Usage Register ABI Name Usage
Usage x10-x11 a0-al arguments and results x0 zero The constant value 0 f10-f11 fa0-fal Argument and Return values
x9, x18-x27 | sl, s2-s11 Saved x8, x2 s0/fp, sp frame pointer, stack pointer 18-19, f18-f27 | fs0-fs1, fs2-fs11 Saved registers
x5-7, x28-x31] t0-t2, t3-t6 Temporaries x1, x3 ra, gp return address, global pointer f0 — 7, £28-f31| ft0-ft7, ft8-ft11 Temporaries registers
x12-x17 a2-a7 Arguments x4 tp thread pointer [f12-17 fa2-fa7 Function arguments
System |Service Name |Serv.No.(a7) INPUT Arguments OUTPUT Args Service Name [Serv.No.(a7) INPUT Arguments OUTPUT Arguments
calls print_int 1 a0=integer to print - read_float 6 - fa0=float
print_float 2 fa0=float to print - read_double 7 - fa0=double
print_double 3 fa0=double to print - read_string 8 a0=address of input buffer, al=max chars to read -—-
print_string 4 a0=address of ASCIIZ string to print - sbrk 9 a0=Number of bytes to be allocated a0=pointer to allocated memory
read_int 5 - a0=integer exit 10 -

2) [8/30] Si consideri una cache di dimensione 48B e a 3 vie di tipo write-back/write-non-allocate. La dimensione
del blocco ¢ 4 byte, il tempo di accesso alla cache ¢ 4 ns e la penalita in caso di miss ¢ pari a 40 ns, la politica di
rimpiazzamento ¢ LRU. Il processore effettua i seguenti accessi in cache, ad indirizzi al byte: 748, 377, 319,
283,243, 391, 144, 770, 945, 61, 194. Tali accessi sono alternativamente letture e scritture. Per la sequenza
data, ricavare il tempo medio di accesso alla cache, riportare i tag contenuti in cache al termine, 1 bit di
modifica (se presenti) e la lista dei blocchi (ovvero il loro indirizzo) via via eliminati durante il rimpiazzamento
ed inoltre in corrispondenza di quale riferimento il blocco ¢ eliminato.

