COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12

-2025

DA RESTITUIRE INSIEME AGLI ELABORATI ¢ A TUTTI I FOGLI
- NON USARE FOGLI NON TIMBRATI
- ANDARE IN BAGNO PRIMA DELL’INIZIO DELLA PROVA

- NO FOGLI PERSONALI, NO TELEFONI, SMARTPHONE/WATCH,

ETC

MATRICOLA
COGNOME
NOME

NOTA: dovra essere consegnato I’elaborato dell’es.1 come file <COGNOME>.s

1) [22/30] Trovare il codice assembly RISC-V corrispondente al seguente micro-benchmark (utilizzando solo e unicamente istruzioni
dalla tabella sottostante), rispettando le convenzioni di uso dei registri dell’assembly (riportate qua sotto, per riferimento).

float sum abs_pairwise(float *p, int N) { int main() {

float s = 0.0f;
for (float *pi = p; pi < p + (N - 1); ++pi)
for (float *pj =pi + 1; pj < p + N; ++pj) {
float d = *pi - *pj;
if (d < 0.0f) d = -d;

int N = 6;

float *p = (float*) sbrk(N * sizeof(float));

for (int k = 0; k < N;

++k) *(p + k) = (float)k - 4.5f;

float s = sum_abs pairwise(p, N);
print_string("Sum abs pairwise diffs: "); print float(s);

s += d; exit (0);
} }
return s;
}
RISCYV Instructions (RV64IMFD) v230703
Instruction coding (hexadecimal) . .) Meaning
funct7/imm lfunct3] opcode Instruction Example Register operation (** instructions available only in RV64, i.e. 64-bit case)
00 0 | 33/3b | add add/addw x5,x%6,x7 x5 & x6+x7 Add two operands; exception possible (addw**)
20 0 [33/3b | subtract sub/subw x5,x6,x7 x5 € x6 - x7 Subtracts two operands; exception possible (subw**)
imm 0 [13/1b | add immediate addiladdiw x5,x6,100 x5 € x6 + 100 Add a constant ; exception possible (addiw**)
01 0 [33/3b [multiply mul/mulw x5,x6, x7 x5 € x6* x7 (signed/word) Lower 64 bits of 128-bits product (mulw**)
01 1 33 | multiply high mulh x5,x6,x7 x5 € x6*x7 Higher 64bits of 128-bits product
01 4 | 33/3b | division div/divw x5,x6,x7 xb € xB/x7 (signed/word) division (divw**)
01 6 | 33/3b | remind. rem/remw x5,x6,x7 x5 € x6 % x7 Reminder of the division (remw**)
00 2/3| 33 | seton less than slt/sltu x5,x6,x7 if (X6 <x7) x5 € 1;else x5 € 0 signed compare x6 and x7 (less than)
imm 23 13 | set on less than immediate sltilsltiu x5,x6,100 if (x6 < 100) X5€ 1; else x5 € 0 unsigned compare x6 and 100 (less than)
00 7/6/4] 33 | and/or/xor andlor/xor x5,x6,x7 x5€& xB&x7 [xB|x7 [x6" x7 Logical AND/OR/XOR register operand
imm 7/6/4] 13 | and/or/xori diat andilorilxori x5,x6,100 x5 € x6&100 / x6]100 / x6*100 Logical AND/OR/XOR constant operand
0 1 | 33/3b | shift left logical sll/sllw x5,x6,x7 x5 & X6 <<x7 Shift left by register (sllw**)
imm 1 | 13/1b | shift left logical i diat sllil/slliw x5,%6,10 x5 € x6<<10 Shift left by the immediate value (slliw**)
0 5 | 33/3b [shift right logical srlisrlw x5,x6,x7 xb € x6 >>x7 Shift right by register (sriw**)
imm 5 | 13/1b [shift right logical i diat srlilsrliw x5,x6,10 x5 € x6>>10 Shift left by immediate value (srliw**)
20 5 | 33/3b | shift right arithmetic sralsraw x5,x6,x7 x5 € x6 >>x7 (arith.) Shift right by register (sign is preserved) (sraw**)
imm 5 | 13/1b [shift right arithmetic immediate srailsraiw x5,%6,10 x5 € x6 >> 10 (arith.) Shift right by immediate value (sraiw**)
imm 3/2/0f 03 | load dword / word / byte 1d/1w/1b x5,100 (x6) x5 € MEM[x6+100] Data from memory to register
imm 6/4| 03 | load word /byte unsigned 1wu/lbu x5,100 (x6) x5 € MEM[x6+100] Data from mem. To reg.; no sign extension (lwu**)
imm 32| 23 | store dword / word / byte sd/sw/sb x5,100 (x6) MEM[x6+100] € x5 Data from register to memory (sw**)
imm[31:12] - 37 | load upper immediate lui x5,0x12345 x5 € 0x1234'5000 Load most significant 20 bits
x5 € &var PSEUDO INST. REAL: lui x5,H20(&var) ;ori x5, L12(&var)
PSEUDOINSTRUCTION | load address 1a ¥5,var o acossof v i INST. (H20=high 20 bils of &var; L12=low 12 bits of &var)
m:rr:’[‘;[f_gf(fs] 1‘:5‘;:’0) 5 | st63 | jumpibranch i/b label PC+=off (off=PC-glabel) (PSINST) |REAL INST.: jal x0,offset/beq x0,x0,offset]
imm(31:12] (rd=1) - 6f | jump and link (offset) jal label x1€(PC+4); PC+=offset (PS. INST.) REAL INST.: jal x1,offset (offset=PC-&label)
Imm (rd=0,rs=1) 0 67 | return from procedure ret PC&x1 (PSEUDO INST.) REAL INST.: jalr x0,0(x1)
imm 0 67 | jump and link register jalr x1, 100 (x5) x1 € (PC +4); PC=x5+100 Procedure return; indirect call
imm+2 0N 63 | branch on equal / not-equal beg/bne x5,x6,100 if (x5 = =/!= x6) PC=PC+100 Equal / Not-equal test; PC relative branch
00 (rs1=0,rs2=0rd=0) | 0 73 | ecall ecall SEPC&-PC;PC<-STVEC;save PLIE;PL=1;E=0 | Call OS (service number in a7); PL= privilege lev; [E=int.en.
08 (rs1=0,rs2=2,rd=0) | 0 73 | sret sret PC<SEPC; restore PL/IE Exit supervisor mode; PL= privilege lev; IE=int.en.
PSEUDOINSTRUCTION move mv x5,%6 x5 € x6 (PSEUDO INST.) REAL INST.: add x5,x0,x6
PSEUDOINSTRUCTION load immediate 1i x5,100 x5 € 100 (PSEUDO INST.) REAL INST.: addi x5,x0,100
PSEUDOINSTRUCTION no operation (nop) nop do nothing (PSEUDO INST.) REAL INST.: addi x0,x0,0
{0,1} / {45} 0 53 | floating point add/sub fadd/fsub. {s,d} £0,£1,£2 [f0&M+2 | f0&f1-f2 Single or double precision add / subtract
{8,9) / {c,d} 0 53 | floating point multiplication/division fmul/fdiv. {s,d} £0,£1,£2 [f0&f1*2 [f0&f1/R2 Single or double precision multiplication /_division
PSEUDOINSTRUCTION floating point move between f-regs fmv. {s,d} £0,f1 f0&f1 PSEUDO INST.) REAL INST.: fsgnj.{s,d} £0,6f1l,6f1l
PSEUDOINSTRUCTION floating point negate fneg.{s,d} £0,£f1 f0&< —(f1) PSEUDO INST.) REAL INST.: fsgnjn.{s,d} £0,6fl,fl
PSEUDOINSTRUCTION floating point absolute value fabs. {s,d} £0,£f1 f0& | f1] PSEUDO INST.) REAL INST.: fsgnijx.{s,d} £0,6fl,6fl
{50,51} 0M1/2[53 | floating point compare fle/flt/feq.{s,d} x5,£0,£f1l |x5< (f0<f1) Single and double: compare f0 and f1 <=,<,==
{70,71} (rs2=0) 0 53 | move bet X (integer) and f regs fmv.x. {s,d} x5,£0 x5<-f0 (no conversion) Copy (no conversion)
{78,79} (rs2=0) 0 53 | move between f and x regs fmv.{s,d}.x £0,x5 f0€x5 (no conversion) Copy (no conversion)
imm 2 7 load/store floating point (32bit) flw/fsw £0,0 (x5) [f0&MEM[x5] / MEM[x5]<f0 Data from FP register to memory
imm 3 7__| loadistore floating point (64bit) £f1d/fsd £0,0 (x5) [f0&MEM[x5] / MEM[x5]<f0 Data from FP register to memory
21120 (rs2=0) 7 53 | convert to/from double from/to single |fcvt.d.s/fcvt.s.d £0,f1 f0< (double)f1 / f0& (single)f1 Type conversion
{60,61} (rs2=0) 7 53 | convert to integer from {single,double} |fcvt.w.{s,d} x5, £0 x5< (int)f0 Type conversion
{68,69} (rs2=0) 7 53 | convert to {single,double} from integer |fcvt.{s,d} .w £0,x5 f0& ({single,double})x5 Type conversion
{2c,2d} (rs2=0) 0 53 | square root fsqrt. {s,d} £0,£f1 f0<& square root of f1 Single or double square root
{10,11} 0M/2| 53 | sign injection £fsgnj/jn/ix.{s,d} £0,£1,£2 |f0&sgn(f2)[f1] / —sgn(f2)[f1] / sgn(f2)f1|Extract the mantissa and exp. from f1 and sign from f2
Register Register ABI Name Usage Register | ABI Name Usage Register ABI Name Usage
Usage x10-x11 a0-al arguments and results x0 zero The constant value 0 f10-f11 fa0-fal Argument and Return values
x9, x18-x27 | sl, s2-s11 Saved x8, x2 | s0/fp, sp frame pointer, stack pointer 18-19, f18-f27 | fs0-fs1, fs2-fs1l Saved registers
x5-7, x28-x31{ t0-t2, t3-t6 Temporaries x1, x3 ra, gp return address, global pointer f0 — £7, £28-f31| ft0-ft7, ft8-ft11 Temporaries registers
x12-x17 a2-a7 Arguments x4 tp thread pointer | f12-17 fa2-fa7 Function arguments
System | Service Name |Serv.No.(a7) INPUT Arguments OUTPUT Args Service Name |Serv.No.(a7) INPUT Arguments OUTPUT Arguments
calls print_int 1 a0=integer to print - read_float 6 - fa0=float
print_float 2 fa0=float to print - read_double 7 - fa0=double
print_double 3 fa0=double to print - read_string 8 a0=address of input buffer, al=max chars to read -
print_string 4 a0=address of ASCIIZ string to print - sbrk 9 a0=Number of bytes to be allocated a0=pointer to allocated memory
read_int 5 - a0=integer exit 10 - -

2) [8/30] Si consideri una cache di dimensione 48B e a 3 vie di tipo write-back/write-non-allocate. La dimensione
del blocco ¢ 4 byte, il tempo di accesso alla cache ¢ 4 ns e la penalita in caso di miss ¢ pari a 40 ns, la politica di
rimpiazzamento ¢ LRU. Il processore effettua i seguenti accessi in cache, ad indirizzi al byte: 748, 377, 319,
283,243, 391, 144, 770, 945, 61, 194. Tali accessi sono alternativamente letture e scritture. Per la sequenza
data, ricavare il tempo medio di accesso alla cache, riportare i tag contenuti in cache al termine, 1 bit di
modifica (se presenti) e la lista dei blocchi (ovvero il loro indirizzo) via via eliminati durante il rimpiazzamento
ed inoltre in corrispondenza di quale riferimento il blocco ¢ eliminato.

COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12-2025

SOLUZIONE
ESERCIZIO 1

.data
msg:
.text

.asciz "Sum abs pairwise diffs:

"

.globl main

float sum_abs_pairwise (float* p, int N)

a0 =p

(base pointer), al = N

sum_abs_pairwise:

fmv.s.x £t3, zero # ft3 = s = 0.0

s1lli a2, al, 2 # a2 = Nb = N*4 (bytes)

add t2, a0, a2 # t2 =end = p + Nb

addi t3, t2, -4 # t3=end-4 (last valid pi)

mv t0, a0 # t0 = pi (byte pointer)
outer_loop:

sltu t4, t0, t3 # t4 = (pi < end-4)?

beq t4, zero, done# if not, finish

addi tl, to, 4 #tl=pj=pi+4
inner_loop:

sltu t5, t1, t2 # t5 = (pj < end)?

beq t5, zero, next_i# if not, advance pi

flw ££0, 0(t0) # £t0 = *pi

flw £t1, 0(tl) # £ftl = *pj

fsub.s £t2, £t0, ftl # £t2 = *pi - *pj

fabs.s ft2, ft2 # £t2 = |£ft2]

fadd.s £t3, ft3, ft2 # s += |*pi - *pj|

addi tl, t1, 4 # pj += 1 (in bytes)

b inner_loop

ESERCIZIO 2

Sia X il generico riferimento, A=associativita’, B=dimensione del blocco, C=capacita’

£t0, £t0, £t5 # k - 4.5

£t0, 0(t6) # *ptr = value
t6, t6, 4 # ptr++

t4, t4, 1 # kt++

init_loop

sum_abs_pairwise(p, N)

a0, soO
al, 6
sum_abs_pairwise # fa0 = result
a0, msg
a7, 4
Print label
a7, 2
Print float (fa0)
a7, 10 # Exit

fadd.s
jnext i: fsw
addi t0, t0, 4 # pi += 1 (in bytes) addi
b outer_loop addi
b
[done : init_done:
fmv.s fa0, £t3 # return s
ret # call
mv
main: 1i
1i al, 6 #N=6 jal
s1lli a0, al, 2 # a0 = N*sizeof (float) B la
1i a7, 9 # sbrk 1i
ecall ecall.
mv s0, a0 # s0O = p (base)
1i
Build constant -4.5f = (-45)/10 ecall.
1i t2, -45
fevt.s.w ftl, t2 # -45.0 1i
1i t3, 10 ecall
fevt.s.w £t2, t3 # 10.0
fdiv.s £t5, ftl, ft2 # £t5 = -4.5
Sum abs
Initialize via pointer: *ptr = (float)k - 4.5
mv t6, sO # t6 = ptr
1i t4, 0 #k=0
init_loop:
beq t4, al, init_done # if k==N break
fevt.s.w £t0, t4 # float (k)

Si ricava S=C/B/A=# di set della cache=48/4/3, XM=X/B, XS=XM%S, XT=XM/S.
A=3, B=4, C=48, RP=LRU, Thit=4, Tpen=40, 11 references:
T X XM XT XS XB H [SET]:USAGE [SET]:MODIF [SET]:TAG
R 748 187 46 3 o 0 [3]:2,0,0 [3]:0,0,0 [3]:46,-,-
W 377 94 23 2 i 0 [2]:2,0,0 [2]:0,0,0 [2]:23,-,-
R 319 79 19 3 3 0 [3]:1,2,0 [3]:0,0,0 [3]:46,19,-
W 283 70 17 2 3 0 [2]:1,2,0 [2]:0,0,0 [2]:23,17,-
R 243 60 15 0 3 0 101:2,0,0 101:0,0.0 [01:15,-,-
W 391 97 24 1 3 0 [1]:2,0,0 [1]:0,0,0 [1]:24,-,- LISTA BLOCCHI
R 144 36 9 0 o o [0]:1,2,0 [0]:0,0,0 [O]:15,9,- S
W 770 192 48 0 2 0 [0]:0,1,2 [0]:0,0,0 [0]:15,9,48 USCENTI:
R 945 236 59 0 1 0 .r01:2.0.1 r01:0.0.0 T101:59.9.48. (out: XM=60 XT=15 XS=0)
W 61 15 3 3 1 0 r31:0,1.2 31:0,0,0 [31:46.,19.3
R 194 48 12 0 2 0 [0]:1,2,0 [0]:0,0,0 [O]:59,12,48 (out: XM=36 XT=9 XS=0)
Pl Nmiss=11l Nhit=0 Nref=11 mrate=1.000000 AMAT=th+mrate*tpen=44

pairwise diffs: 35.0

—— program is finished running (@) —

della cache.

