
COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12-2025 MATRICOLA________________

 COGNOME__________________

NOME____________________

NOTA: dovrà essere consegnato l’elaborato dell’es.1 come file <COGNOME>.s

1) [22/30] Trovare il codice assembly RISC-V corrispondente al seguente micro-benchmark (utilizzando solo e unicamente istruzioni

dalla tabella sottostante), rispettando le convenzioni di uso dei registri dell’assembly (riportate qua sotto, per riferimento).

float sum_abs_pairwise(float *p, int N) {

 float s = 0.0f;

 for (float *pi = p; pi < p + (N - 1); ++pi)

 for (float *pj = pi + 1; pj < p + N; ++pj) {

 float d = *pi - *pj;

 if (d < 0.0f) d = -d;

 s += d;

 }

 return s;

}

int main() {

 int N = 6;

 float *p = (float*) sbrk(N * sizeof(float));

 for (int k = 0; k < N; ++k) *(p + k) = (float)k - 4.5f;

 float s = sum_abs_pairwise(p, N);

 print_string("Sum abs pairwise diffs: "); print_float(s);

 exit(0);

}

RISCV Instructions (RV64IMFD) v230703

Instruction coding (hexadecimal)
Instruction Example Register operation

Meaning

(** instructions available only in RV64, i.e. 64-bit case) funct7/imm funct3 opcode

00 0 33/3b add add/addw x5,x6,x7 x5  x6 + x7 Add two operands; exception possible (addw**)
20 0 33/3b subtract sub/subw x5,x6,x7 x5  x6 – x7 Subtracts two operands; exception possible (subw**)

imm 0 13/1b add immediate addi/addiw x5,x6,100 x5  x6 + 100 Add a constant ; exception possible (addiw**)
01 0 33/3b multiply mul/mulw x5,x6, x7 x5  x6 * x7 (signed/word) Lower 64 bits of 128-bits product (mulw**)
01 1 33 multiply high mulh x5,x6,x7 x5  x6 * x7 Higher 64bits of 128-bits product
01 4 33/3b division div/divw x5,x6,x7 x5  x6/x7 (signed/word) division (divw**)
01 6 33/3b reminder rem/remw x5,x6,x7 x5  x6 % x7 Reminder of the division (remw**)
00 2/3 33 set on less than slt/sltu x5,x6,x7 if (x6 < x7) x5  1; else x5  0 signed compare x6 and x7 (less than)

imm 2/3 13 set on less than immediate slti/sltiu x5,x6,100 if (x6 < 100) x5 1; else x5  0 unsigned compare x6 and 100 (less than)
00 7/6/4 33 and / or / xor and/or/xor x5,x6,x7 x5 x6&x7 / x6|x7 / x6^ x7 Logical AND/OR/XOR register operand

imm 7/6/4 13 and /or / xor immediate andi/ori/xori x5,x6,100 x5  x6&100 / x6|100 / x6^100 Logical AND/OR/XOR constant operand
0 1 33/3b shift left logical sll/sllw x5,x6,x7 x5  x6 << x7 Shift left by register (sllw**)

imm 1 13/1b shift left logical immediate slli/slliw x5,x6,10 x5  x6 << 10 Shift left by the immediate value (slliw**)
0 5 33/3b shift right logical srl/srlw x5,x6,x7 x5  x6 >> x7 Shift right by register (srlw**)

imm 5 13/1b shift right logical immediate srli/srliw x5,x6,10 x5  x6 >> 10 Shift left by immediate value (srliw**)
20 5 33/3b shift right arithmetic sra/sraw x5,x6,x7 x5  x6 >> x7 (arith.) Shift right by register (sign is preserved) (sraw**)

imm 5 13/1b shift right arithmetic immediate srai/sraiw x5,x6,10 x5  x6 >> 10 (arith.) Shift right by immediate value (sraiw**)
imm 3/2/0 03 load dword / word / byte ld/lw/lb x5,100(x6) x5  MEM[x6+100] Data from memory to register
imm 6/4 03 load word / byte unsigned lwu/lbu x5,100(x6) x5  MEM[x6+100] Data from mem. To reg.; no sign extension (lwu**)
imm 3/2 23 store dword / word / byte sd/sw/sb x5,100(x6) MEM[x6+100]  x5 Data from register to memory (sw**)

imm[31:12] - 37 load upper immediate lui x5,0x12345 x5  0x1234’5000 Load most significant 20 bits

PSEUDOINSTRUCTION load address la x5,var
x5  &var (PSEUDO INST.)
load address of ‘var’ in x5

REAL: lui x5,H20(&var);ori x5, L12(&var)

INST. (H20=high 20 bits of &var; L12=low 12 bits of &var)

imm[31:12] (rd=0)

imm[11:0] (rs1=rs2=0)

-

0
6f/63 jump/branch j/b label PC+=off (off=PC-&label) (PS.INST.) REAL INST.: jal x0,offset/beq x0,x0,offset

imm[31:12] (rd=1) - 6f jump and link (offset) jal label x1(PC+4); PC+=offset (PS. INST.) REAL INST.: jal x1,offset (offset=PC-&label)
Imm (rd=0,rs=1) 0 67 return from procedure ret PCx1 (PSEUDO INST.) REAL INST.: jalr x0,0(x1)

imm 0 67 jump and link register jalr x1, 100(x5) x1  (PC + 4); PC=x5+100 Procedure return; indirect call
imm÷2 0/1 63 branch on equal / not-equal beq/bne x5,x6,100 if (x5 = =/!= x6) PC=PC+100 Equal / Not-equal test; PC relative branch

00 (rs1=0,rs2=0,rd=0) 0 73 ecall ecall SEPCPC;PCSTVEC;save PL/IE;PL=1;IE=0 Call OS (service number in a7); PL= privilege lev; IE=int.en.
08 (rs1=0,rs2=2,rd=0) 0 73 sret sret PCSEPC; restore PL/IE Exit supervisor mode; PL= privilege lev; IE=int.en.

PSEUDOINSTRUCTION move mv x5,x6 x5  x6 (PSEUDO INST.) REAL INST.: add x5,x0,x6

PSEUDOINSTRUCTION load immediate li x5,100 x5  100 (PSEUDO INST.) REAL INST.: addi x5,x0,100

PSEUDOINSTRUCTION no operation (nop) nop do nothing (PSEUDO INST.) REAL INST.: addi x0,x0,0

{0,1} / {4,5} 0 53 floating point add/sub fadd/fsub.{s,d} f0,f1,f2 f0f1+f2 / f0f1-f2 Single or double precision add / subtract
{8,9} / {c,d} 0 53 floating point multiplication/division fmul/fdiv.{s,d} f0,f1,f2 f0f1*f2 / f0f1/f2 Single or double precision multiplication / division
PSEUDOINSTRUCTION floating point move between f-regs fmv.{s,d} f0,f1 f0f1 (PSEUDO INST.) REAL INST.: fsgnj.{s,d} f0,f1,f1

PSEUDOINSTRUCTION floating point negate fneg.{s,d} f0,f1 f0 − (f1) (PSEUDO INST.) REAL INST.: fsgnjn.{s,d} f0,f1,f1

PSEUDOINSTRUCTION floating point absolute value fabs.{s,d} f0,f1 f0 | f1 | (PSEUDO INST.) REAL INST.: fsgnjx.{s,d} f0,f1,f1

{50,51} 0/1/2 53 floating point compare fle/flt/feq.{s,d} x5,f0,f1 x5 (f0<f1) Single and double: compare f0 and f1 <=,<,==
{70,71} (rs2=0) 0 53 move between x (integer) and f regs fmv.x.{s,d} x5,f0 x5f0 (no conversion) Copy (no conversion)
{78,79} (rs2=0) 0 53 move between f and x regs fmv.{s,d}.x f0,x5 f0x5 (no conversion) Copy (no conversion)

imm 2 7 load/store floating point (32bit) flw/fsw f0,0(x5) f0MEM[x5] / MEM[x5]f0 Data from FP register to memory
imm 3 7 load/store floating point (64bit) fld/fsd f0,0(x5) f0MEM[x5] / MEM[x5]f0 Data from FP register to memory

21/20 (rs2=0) 7 53 convert to/from double from/to single fcvt.d.s/fcvt.s.d f0,f1 f0 (double)f1 / f0 (single)f1 Type conversion
{60,61} (rs2=0) 7 53 convert to integer from {single,double} fcvt.w.{s,d} x5,f0 x5 (int)f0 Type conversion
{68,69} (rs2=0) 7 53 convert to {single,double} from integer fcvt.{s,d}.w f0,x5 f0 ({single,double})x5 Type conversion
{2c,2d} (rs2=0) 0 53 square root fsqrt.{s,d} f0,f1 f0 square root of f1 Single or double square root

{10,11} 0/1/2 53 sign injection fsgnj/jn/jx.{s,d} f0,f1,f2 f0sgn(f2)|f1| / −sgn(f2)|f1| / sgn(f2)f1 Extract the mantissa and exp. from f1 and sign from f2

System
calls

Service Name Serv.No.(a7) INPUT Arguments OUTPUT Args Service Name Serv.No.(a7) INPUT Arguments OUTPUT Arguments

print_int 1 a0=integer to print --- read_float 6 --- fa0=float

print_float 2 fa0=float to print --- read_double 7 --- fa0=double

print_double 3 fa0=double to print --- read_string 8 a0=address of input buffer, a1=max chars to read ---

print_string 4 a0=address of ASCIIZ string to print --- sbrk 9 a0=Number of bytes to be allocated a0=pointer to allocated memory

read_int 5 --- a0=integer exit 10 --- ---

2) [8/30] Si consideri una cache di dimensione 48B e a 3 vie di tipo write-back/write-non-allocate. La dimensione

del blocco è 4 byte, il tempo di accesso alla cache è 4 ns e la penalità in caso di miss è pari a 40 ns, la politica di

rimpiazzamento è LRU. Il processore effettua i seguenti accessi in cache, ad indirizzi al byte: 748, 377, 319,

283, 243, 391, 144, 770, 945, 61, 194. Tali accessi sono alternativamente letture e scritture. Per la sequenza

data, ricavare il tempo medio di accesso alla cache, riportare i tag contenuti in cache al termine, i bit di

modifica (se presenti) e la lista dei blocchi (ovvero il loro indirizzo) via via eliminati durante il rimpiazzamento

ed inoltre in corrispondenza di quale riferimento il blocco è eliminato.

Register
Usage

Register ABI Name Usage Register ABI Name Usage Register ABI Name Usage

x10-x11 a0-a1 arguments and results x0 zero The constant value 0 f10-f11 fa0-fa1 Argument and Return values

x9, x18-x27 s1, s2-s11 Saved x8, x2 s0/fp, sp frame pointer, stack pointer f8-f9, f18-f27 fs0-fs1, fs2-fs11 Saved registers

x5-7, x28-x31 t0-t2, t3-t6 Temporaries x1, x3 ra, gp return address, global pointer f0 – f7, f28-f31 ft0-ft7, ft8-ft11 Temporaries registers

x12-x17 a2-a7 Arguments x4 tp thread pointer f12-17 fa2-fa7 Function arguments

DA RESTITUIRE INSIEME AGLI ELABORATI e A TUTTI I FOGLI

→ NON USARE FOGLI NON TIMBRATI

→ ANDARE IN BAGNO PRIMA DELL’INIZIO DELLA PROVA

→ NO FOGLI PERSONALI, NO TELEFONI, SMARTPHONE/WATCH, ETC

COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12-2025

SOLUZIONE

ESERCIZIO 1
 .data

msg: .asciz "Sum abs pairwise diffs: "

 .text

 .globl main

float sum_abs_pairwise(float* p, int N)

a0 = p (base pointer), a1 = N

sum_abs_pairwise:

 fmv.s.x ft3, zero # ft3 = s = 0.0

 slli a2, a1, 2 # a2 = Nb = N*4 (bytes)

 add t2, a0, a2 # t2 = end = p + Nb

 addi t3, t2, -4 # t3=end-4 (last valid pi)

 mv t0, a0 # t0 = pi (byte pointer)

outer_loop:

 sltu t4, t0, t3 # t4 = (pi < end-4)?

 beq t4, zero, done# if not, finish

 addi t1, t0, 4 # t1 = pj = pi + 4

inner_loop:

 sltu t5, t1, t2 # t5 = (pj < end)?

 beq t5, zero, next_i# if not, advance pi

 flw ft0, 0(t0) # ft0 = *pi

 flw ft1, 0(t1) # ft1 = *pj

 fsub.s ft2, ft0, ft1 # ft2 = *pi - *pj

 fabs.s ft2, ft2 # ft2 = |ft2|

 fadd.s ft3, ft3, ft2 # s += |*pi - *pj|

 addi t1, t1, 4 # pj += 1 (in bytes)

 b inner_loop

next_i:

 addi t0, t0, 4 # pi += 1 (in bytes)

 b outer_loop

done:

 fmv.s fa0, ft3 # return s

 ret

main:

 li a1, 6 # N = 6

 slli a0, a1, 2 # a0 = N*sizeof(float) B

 li a7, 9 # sbrk

 ecall

 mv s0, a0 # s0 = p (base)

 # Build constant -4.5f = (-45)/10

 li t2, -45

 fcvt.s.w ft1, t2 # -45.0

 li t3, 10

 fcvt.s.w ft2, t3 # 10.0

 fdiv.s ft5, ft1, ft2 # ft5 = -4.5

 # Initialize via pointer: *ptr = (float)k - 4.5

 mv t6, s0 # t6 = ptr

 li t4, 0 # k = 0

init_loop:

 beq t4, a1, init_done # if k==N break

 fcvt.s.w ft0, t4 # float(k)

 fadd.s ft0, ft0, ft5 # k - 4.5

 fsw ft0, 0(t6) # *ptr = value

 addi t6, t6, 4 # ptr++

 addi t4, t4, 1 # k++

 b init_loop

init_done:

 # Call sum_abs_pairwise(p, N)

 mv a0, s0

 li a1, 6

 jal sum_abs_pairwise # fa0 = result

 la a0, msg

 li a7, 4

 ecall. # Print label

 li a7, 2

 ecall. # Print float (fa0)

 li a7, 10 # Exit

 ecall

ESERCIZIO 2
Sia X il generico riferimento, A=associativita’, B=dimensione del blocco, C=capacita’ della cache.

Si ricava S=C/B/A=# di set della cache=48/4/3, XM=X/B, XS=XM%S, XT=XM/S.

A=3, B=4, C=48, RP=LRU, Thit=4, Tpen=40, 11 references:

=== T X XM XT XS XB H [SET]:USAGE [SET]:MODIF [SET]:TAG

=== R 748 187 46 3 0 0 [3]:2,0,0 [3]:0,0,0 [3]:46,-,-

=== W 377 94 23 2 1 0 [2]:2,0,0 [2]:0,0,0 [2]:23,-,-

=== R 319 79 19 3 3 0 [3]:1,2,0 [3]:0,0,0 [3]:46,19,-

=== W 283 70 17 2 3 0 [2]:1,2,0 [2]:0,0,0 [2]:23,17,-

=== R 243 60 15 0 3 0 [0]:2,0,0 [0]:0,0,0 [0]:15,-,-

=== W 391 97 24 1 3 0 [1]:2,0,0 [1]:0,0,0 [1]:24,-,-

=== R 144 36 9 0 0 0 [0]:1,2,0 [0]:0,0,0 [0]:15,9,-

=== W 770 192 48 0 2 0 [0]:0,1,2 [0]:0,0,0 [0]:15,9,48

=== R 945 236 59 0 1 0 [0]:2,0,1 [0]:0,0,0 [0]:59,9,48. (out: XM=60 XT=15 XS=0)

=== W 61 15 3 3 1 0 [3]:0,1,2 [3]:0,0,0 [3]:46,19,3

=== R 194 48 12 0 2 0 [0]:1,2,0 [0]:0,0,0 [0]:59,12,48 (out: XM=36 XT=9 XS=0)

P1 Nmiss=11 Nhit=0 Nref=11 mrate=1.000000 AMAT=th+mrate*tpen=44

LISTA BLOCCHI

USCENTI:

CONTENUTI dei SET al termine

